Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Электромагнитные подшипники




Как известно, в машинах и исполнительных механизмах для опор роторов, как правило, используются либо подшипники качения, либо гидродинамические подшипники жидкостного трения. Каждое из этих решений имеет свои преимущества, недостатки и область рационального применения. Однако ни одно из них не обеспечивает желаемых высоких характеристик, надёжности, безопасности, ресурса, КПД, малых потерь на трение и др. Все виды подшипников имеют ограничения по скорости вращения, нагрузкам, тепловым напряжениям, виброхарактеристикам и т.п.

Альтернативным решением для создания эффективной конструкции или разгрузки подшипников качения и скольжения является «магнитный подвес», в котором ротор поддерживается в рабочем зазоре пондермоторными силами электромагнитной системы.

Приведем преимущества подобного конструктивного решения:

- отсутствие момента сухого трения;

- исключение маслосистемы;

- возможность достижения высоких скоростей вращения;

- управляемость характеристик жесткости и демпфирования;

- снижение уровня вибраций;

- возможность подавления резонансных явлений;

- высокая долговечность;

- снижение затрат на эксплуатацию, обслуживание и ремонт;

- возможность работы в вакууме и агрессивных средах.

Конструктивно радиальный электромагнитный подшипник (рис.36) состоит из статора, представляющего собой композицию электромагнитов, расположенных в корпусе подшипникового узла; пассивного магнита, закрепленного на роторе; датчика положения ротора и страховочного подшипника. Ротор подвешивается в магнитном поле с помощью следящей системы, которая по сигналам датчика регулирует напряжение на катушках электромагнитов и удерживает ротор в центральном положении.

 

   
Рис. 36. Конструкция радиального электромагнитного подшипника Рис. 37. Функциональная схема системы управления электромагнитным подшипником

 

Наличие мощных силовых полупроводниковых приборов в современных условиях делает возможным создание надежных регулируемых источников питания для электромагнитных подшипников с высокой грузоподъемностью. Развитие средств цифровой микропроцессорной техники позволяет реализовать быстродействующие и точные системы стабилизации положения ротора.

Рамные разработки отечественных образцов электромагнитных подшипников (ВНИИЭМ, г. Москва) или снабжены системами управления, выполненными на аналоговых элементах с применением целого ряда датчиков обратной связи (тока, ускорения и положения). Такие системы громоздки, неудобны в наладке, обладают минимумом диагностических возможностей и требуют специальной подготовки обслуживающего персонала. Современный подход к технической реализации электромагнитного подвеса роторов заключается в создании системы прямого цифрового управления электромагнитами подшипника. Функциональная схема одного канала управления электромагнитным подшипником представлена на рис. 37.

Под объектом управления понимается процесс перемещения ротора в магнитном поле электромагнитов, управляемых напряжением силового транзисторного преобразователя. Датчик положения ротора имеет цифровой выходной сигнал, который подается на инверсные входы двух последовательно включенных цифровых регуляторов, (рис. 38).

Регуляторы выполняются программно на однокристальной ЭВМ или программируемом контроллере. Для управления силовыми ключами транзисторного моста служит цифровой широтно-импульсный модулятор (ШИМ) (рис. 39).

 

а    

 

 
Рис. 38. Схема компоновки магнитного подвеса ротора: а – схема компоновки электромагнитов; б – схема расположения датчиков

 

Рис. 39. Схема управления магнитным подвесом генератора

 

Такой подход к построению системы управления электромагнитными подшипниками, разработанный учеными и сотрудниками Самарского технического университета, во-первых, отличается простотой технической реализации прямого цифрового управления. Во-вторых, структура системы, известная в технике следящих электроприводов как структурно-минимальный электропривод, позволяет получить высокое быстродействие при обработке внешних возмущений, абсолютную статическую четкость и активное демпфирование вибраций. В-третьих, цифровая реализация регуляторов дает возможность все настроечные операции производить с внешнего пульта управления и (при соответствующей доработке) автоматизировать процесс настройки. Предложенные системы прямого цифрового управления электромагнитными подшипниками могут быть выполнены миниатюрно на однокристальных контроллерах и специализированных больших интегральных микросхемах, к тому же они относительно дешевы.

Разработанная методика синтеза предлагаемых цифровых систем управления в совокупности со специализированным программным обеспечением позволяет реализовать точный параметрический синтез регуляторов при существенных колебательных свойствах объекта управления.

Замена или разгрузка подшипников скольжения на электромагнитные резко увеличивает срок службы и надежность машин за счет практического устранения износа вращающихся деталей, упрощает их эксплуатацию и обслуживание.

Ротор электрической машины подвешивается в магнитном поле при давлении пондермоторных сил

(12)

где - вектор магнитного поля; - нормаль к поверхности ротора; - магнитная проницаемость воздуха.

Магнитное поле создается катушкой, размещенной на статоре (см. рис. 36), поэтому направление поля близко к нормам, а давление пондермоторных сил приводит к притяжению ротора к якорю. Поскольку подвеска ротора в стационарном поле магнитов в течение продолжительного времени невозможна, требуется наличие следящей системы, с помощью которой компенсируются отклонения ротора от теоретической оси вращения за счет обмена импульсом между ротором и полем. Время компенсации перемещения, согласно закону сохранения количества движения, равно

(13)

где - плотность материала ротора; - радиус ротора; - допустимое перемещение ротора; - площадь полюсных наконечников; - длина подшипника.

Проведенный анализ показал, что подвес роторов небольших размеров потребует использования малоинерционных устройств управления магнитным полем. В связи с этим электромагнитный подшипник целесообразно реализовать с использованием секций, размещенных вдоль ротора (см. рис. 38, а) и с применением в системе управления бесконтактных емкостных датчиков (см. рис. 39). При отклонении ротора будет изменяться зазор между ротором и датчиком, что сформирует измерительный сигнал. Результаты измерения (см. рис. 39) поступают в вычислительное устройство, вырабатывающее команды управления. Силовые управляющие катушки по управляющему сигналу возвратят ротор на прежнее место. Расчеты стального ротора с размером вала в зоне магнитного поля около 80 мм показали, что при отклонении ротора на 100 мкм время реализации составляет около 1 мс. Требуемая напряженность магнитного поля - около 100 кА/м. Указанные величины вполне реализуемы.

Расчеты показали также, что механические воздействия на автомобильный транспорт (удары с верхней границей частоты 120 Гц) не способны дестабилизировать следующую систему: минимальное время воздействия - около 16 мкс - много больше времени реакции следящей системы. Таким образом, применение электромагнитных подшипников позволит не только увеличить срок службы машин, но и значительно снизить их чувствительность к ударам и вибрациям, что также повысит качество динамических параметров роторных систем.

 

 


Поделиться:

Дата добавления: 2015-02-09; просмотров: 338; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты