Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Элементарные функции, их свойства и графики

Читайте также:
  1. I. Физические свойства мочи
  2. II. Жиры (ацилглицеролы). Их структура, классификация и свойства
  3. II.4. Классификация нефтей и газов по их химическим и физическим свойствам
  4. V. ОСНОВНЫЕ СВОЙСТВА ДЕЙСТВИЯ ВРЕМЕНИ
  5. А. Определение свойства
  6. А. Свойства и виды рецепторов. Взаимодействие рецепторов с ферментами и ионными каналами
  7. Автоматизированное рабочее место. Его состав, функции, аппаратное и программное обеспечение.
  8. АД с улучшенными пусковыми свойствами
  9. Аденовирусы, морфология, культуральные, биологические свойства, серологическая классификация. Механизмы патогенеза, лабораторная диагностика аденовирусных инфекций.
  10. Алгоритм. Свойства алгоритма. Способы описания алгоритма. Примеры.

Функция у от х называется элементарной, если ее можно задать одной формулой вида для всех х из области ее определения так, что каждое ее значение может быть получено из постоянных чисел и значения независимой переменной при помощи конечного числа элементарных операций.

Основными элементарными функциями называются следующие:

1)степенная функция , где – любое действительное число;

2)показательная функция , ;

3)логарифмическая функция , ;

4)тригонометрическая функция , , , а также , , , .

Свойства функций

Функция называется ограниченной сверху (снизу) в некоторой области значений аргумента, если существует такое число А, что для любого х из этой области. Функция называется ограниченной, если она ограничена и сверху и снизу.

Пример:

1) Функция определена на всем множестве действительных чисел, ограничена, т.к. при любых значениях х по абсолютной величине не превосходит 1, т.е. .

x
y

2) Функция в промежутке ограничена снизу, например, числом 1, но не ограничена сверху (см. рис.)   3) Функция на интервале не ограничена, т.е. (см. приложение).

Функция называется возрастающей (убывающей) в некоторой области, если для любой пары чисел , , принадлежащей этой области, из следует

.

Если же из следует , то функция называется неубывающей (невозрастающей).

Функции, удовлетворяющие первому или второму условиям, называются монотонными.

Пример:функция возрастает в интервале ; функция убывает на и .

Функция называется четной, если , и нечетной, если

Пример: функция - четная, т.к. , а функция - нечетная, т.к. . Их сумма не является ни четной, ни нечетной (обычно говорят «функция общего вида»)

График четной функции симметричен относительно оси ординат Оу, а график нечетной – относительно начала координат.

Функция называется периодической, если существует такое положительное действительное число t, что для всех точек х и из области определения функции имеет место равенство . При этом число t называют периодом функции. Например, функции и имеют основной период, равный , а и - .


Дата добавления: 2015-04-04; просмотров: 37; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Аргумент и функция. Область определений и область значений функции. Способы задания функций | 
lektsii.com - Лекции.Ком - 2014-2017 год. (0.009 сек.) Главная страница Случайная страница Контакты