Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Тема 4.2. Концепции квантовой механики




OОсновные понятия

Корпускулярно-волновой дуализм как всеобщее свойство материи. Мысленный эксперимент «микроскоп Гейзенберга». Соотношение неопределенностей координата-импульс (скорость). Принцип дополнительности Статистический характер квантового описания природы.

& Краткое содержание

Корпускулярно-волновой дуализм как всеобщее свойство материи

Мысленный эксперимент «микроскоп Гейзенберга»

Соотношение неопределенностей координата-импульс (скорость)

Принцип дополнительности как утверждение о том, что:

- невозможны невозмущающие измерения (измерение одной величины делает невозможным или неточным измерение другой, дополнительной к ней величины)

- полное понимание природы микрообъекта требует учёта как его корпускулярных, так и волновых свойств, хотя они не могут проявляться в одном и том же эксперименте

- (в широком смысле) для полного понимания любого предмета или процесса необходимы несовместимые, но взаимодополняющие точки зрения на него

Статистический характер квантового описания природы

 

В начале ХХ в. физика пришла к заключению о существовании в природе еще одной формы материи - кванта (фотона), обладающего одновременно свойствами волны и корпускулы (Планк, Эйнштейн). Попытки объяснить законы теплового излучения, законы фотоэффекта привели к созданию представления о порции энергии, которая излучается атомами в виде электромагнитного кванта. М. Планк ввел понятие кванта действия (постоянная Планка), в котором заложена идея дискретности электромагнитного излучения.

Впервые физика столкнулась с необходимостью описания противоположных корпускулярных (дискретных) и континуальных (непрерывных) свойств в рамках одного объекта. Многочисленные попытки такого симбиоза не увенчались успехом, и была разработана концепция дополнительности свойств материи.

Принцип дополнительности – это утверждение о том, что:

- невозможны невозмущающие измерения (измерение одной величины делает невозможным или неточным измерение другой, дополнительной к ней величины)

- полное понимание природы микрообъекта требует учёта как его корпускулярных, так и волновых свойств, хотя они не могут проявляться в одном и том же эксперименте

- (в широком смысле) для полного понимания любого предмета или процесса необходимы несовместимые, но взаимодополняющие точки зрения на него

Принцип дополнительности Н. Бора –это концептуально новый подход к вопросу измерения параметров исследуемых объектов - микрообъектов).

Принцип дополнительности по отношению к свойствам света носит название корпускулярно-волнового дуализма. В 1924 году этот принцип распространен Луи де Бройлем на частицы вещества.

Де Бройль выдвинул гипотезу о двойственном характере поведения микрочастиц. Согласно этой гипотезе: всем микрообъектам присущи и корпускулярные, и волновые свойства; в зависимости от внешних условий микрообъекты проявляют либо свойства частиц, либо волновые свойства. Таким образом, корпускулярно-волновой дуализм приобретает универсальный характер: не только фотоны, но и электроны, и любые другие микрочастицы наряду с корпускулярными обладают и волновыми свойствами.

Но микрообъект поворачивается к наблюдателю либо волновой, либо корпускулярной стороной. Экспериментатор не может наблюдать одновременно и волновые, и корпускулярные свойства. Таким образом, некоторое противопоставление корпускулярных и волновых свойств, характерное для электродинамической картины мира, разрешилось в дуализме дискретности и непрерывности как частиц вещества, так и поля.

Идеи де Бройля позволили объяснить многие экспериментальные факты, накопившиеся к этому времени, но и породили новые трудности. Из-за двуликости частицы оказалось невозможно одновременно точно указать ее скорость и положение. Так был сформулирован принцип неопределенности, проявление которого затем были обнаружены далеко за пределами физики.

Соотношение неопределенностей – это концептуально новый подход к определению взаимосвязанных параметров исследуемого микрообъекта.

В физике существует так называемый принцип неопределенности Гейзенберга, согласно которому при ядерном распаде невозможно определить с одинаковой вероятностью координату и импульс. То есть, если что-то известно с большой вероятностью, то другое - с гораздо меньшей. Знаешь - чего, не знаешь - сколько. Знаешь - сколько, не знаешь - чего. Знаешь сколько, чего и где, не знаешь - с кем. Название ни к чему не обязывает, неопределенно все.

Гейзенберг отмечает, что квантово-механические матрицы координаты и импульса не коммутируют друг с другом (не подчиняются перестановочному закону, т.е. АВ ≠ ВА). Это является математическим выражением принципа неопределенностей, сформулированного им в 1927 г.: микрочастица не имеет одновременно точных значений координаты и соответствующей ей проекции импульса, а следовательно, не имеет траектории движения. В частности, электрон в атоме не имеет траектории; вместо непрерывных кривых (стационарные орбиты Бора) есть некоторый дискретный набор чисел (квантовые числа), значения которых зависят от номера начального и конечного состояний электрона.

Это положение сыграло важную роль в становлении квантовой механики. Согласно ему получение экспериментальных данных об одних физических величинах, описывающих микрообъект (например, электрон, протон, атом), неизбежно связано с изменением таких данных о величинах, дополнительных к первым. Такими взаимно дополнительными величинами являются, например, координата и импульс частицы. Этот принцип. содержится в принципе неопределенностей, математическим выражением которого являются соотношения неопределённостей.

Принцип суперпозиции – принцип, определяющий значение некоторой физической величины, формируемой двумя или более физическими величинами той же природы: результирующая физическая величина равна сумме составляющих физических величин

В классической физике: принцип суперпозиции – это допущение, согласно которому результирующий эффект от нескольких независимых воздействий представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности. Справедлив для систем или полей, описываемых линейными уравнениями; важен в механике, теории колебаний и волн, теории физ. полей.

В квантовой механике принцип суперпозиции относится к волновым функциям: если физическая система может находиться в состояниях, описываемых двумя (или несколькими) волновыми функциями, то она может также находиться в состоянии, описываемом любой линейной комбинацией этих функций (принцип суперпозиции состояний).

 

 



Поделиться:

Дата добавления: 2015-04-05; просмотров: 177; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты