Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Формула трапеций. Тогда по формуле (6.32) на отрезке




При п=1 из формулы (6.31) имеем :

Тогда по формуле (6.32) на отрезке получаем интеграл:

(6.33)

Формула (6.33) дает один из простейших способов вычисления определенного интеграла и называется формулой трапеций. Действительно, при п=1 подынтегральная функция заменяется интерполяционным многочленом Лагранжа первой степени (т.е. линейной функцией), а геометрически это означает, что площадь криволинейной фигуры заменяется площадью трапеции.

Распространяя формулу (6.33) на все отрезки разбиения, получим общую формулу трапеций для отрезка :

(6.34)

Если аналитическое выражение для подынтегральной функции известно, может быть поставлен вопрос об оценке погрешности численного интегрирования по формуле (6.34) (погрешность метода).

В этом случае имеется ввиду, что

где ‑ остаточный член квадратурной формулы (6.34). Формулу остаточного члена получим вначале для отрезка . Имеем:

откуда следует, что естественно рассматривать Rкак функцию шага h: R=R(h).Заметим, что R(0)=0.

Продифференцируем R(h) по h:

Заметим, что . Далее:

(6.35)

Определим R, последовательно интегрируя на отрезке :

откуда с учетом (6.35) имеем:

. (6.36)

Применяя к (6.36) обобщенную теорему о среднем, получаем:

(6.37)

где и зависит от h. Далее

откуда с учетом (6.37) и обобщенной теоремы о среднем имеем:

где

Таким образом, погрешность метода при интегрировании функции на отрезке по формуле (6.34) имеет величину:

(6.38)

Из формулы (6.38) видно. что при формула (6.34) дает значение интеграла с избытком, а при ‑ с недостатком. Можно показать, что при распространении оценки (6.38) на весь отрезок интегрирования получается формула:

Учитывая, что , найден следующий окончательный вид для оценки погрешности метода интегрирования по формуле трапеций:

(6.39)

где .

Пример 6.3.

Используем формулу трапеций для n = 2 и n = 4.

Таблица 6.3

xi
f(xi)


Поделиться:

Дата добавления: 2015-04-05; просмотров: 72; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты