Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Поверхности второго порядка.




Поверхностью второго порядка называют совокупность точек пространства, координаты которых x, y, z удовлетворяют уравнению

Коэффициенты могут принимать любые действительные значения и удовлетворяют условию .

Для определения вида поверхности второго порядка необходимо ее уравнение привести к виду, не содержащему произведений координат. Этого можно достичь соответствующим выбором системы координат.

называют квадратичной формой. Матрицу

,

где , называют матрицей квадратичной формы. Вектор , удовлетворяющий условию называют собственным вектором матрицы А, - собственным значением.

Каждая матрица квадратичной формы имеет три взаимно ортогональных собственных вектора. Если единичные векторы собственных векторов матрицы А принять за единичные векторы новой системы координат, то в выражении квадратичной формы коэффициенты при произведениях обратятся в ноль и форма примет вид:

.

Присоединяя к ней линейную часть общего уравнения поверхности второго порядка и выделяя полные квадраты, получим каноническое уравнение поверхности второго порядка.

 

Пример 24. Привести к каноническому виду уравнение поверхности:

3x2 +5y2 +3z2 – 2xy + 2xz – 2yz -12x – 10 = 0.

Решение.

Составим матрицу А:

.

Найдем собственные векторы:

Полученная система имеет ненулевые решения, если ее определитель равен нулю, т.е.

Раскрывая определитель, получим:

.

Отсюда находим: .

При получим систему уравнений:

Решив систему, получим первый собственный вектор . Единичный вектор собственного вектора будет: .

При получим

При получим .

Записывая координаты единичных векторов в соответствующие столбцы, получим матрицу преобразования S:

Отсюда получим формулы преобразования координат:

 

Подставим значения , и в уравнение поверхности:

или

Перепишем уравнение в виде:

Дополнив выражение в каждой скобке до полного квадрата, получим:

Совершив параллельный перенос осей координат и разделив на 24 обе части уравнения, получим

Это уравнение описывает поверхность, называемую эллипсоидом.

Классификация поверхностей второго порядка.

Применяя преобразование координат, уравнение поверхности второго порядка всегда можно привести к виду:

.

В зависимости от величины и знаков коэффициентов , , , , , и могут представиться следующие частные случаи уравнений поверхностей второго порядка.

Таблица 1.

1. Эллипсоиды:

трехосный эллипсоид,

мнимый эллипсоид

точка

2. Гиперболоиды:

1) однополостные гиперболоиды

2) двуполостные гиперболоиды

 

3. Конусы:

4. Параболоиды:

1) эллиптические параболоиды

2) гиперболические параболоиды

5. Цилиндры

1) эллиптические цилиндры

 

2) гиперболические цилиндры

3) - параболические цилиндры

6. Пары плоскостей:

1) - пары пересекающихся плоскостей

2) - пары параллельных плоскостей

3) - пары совпадающих плоскостей


Поделиться:

Дата добавления: 2015-04-15; просмотров: 95; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.011 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты