Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Честные случаи движения точки

Читайте также:
  1. B) это составная часть общественного воспроизводства, отражающая те же стадии (фазы) процесса воспроизводства, но только со стороны движения инвестиционного капитала;
  2. Breakpoints (точки прерывания)
  3. IV. Законы динамики вращательного движения.
  4. Ordm;. Векторный способ задания движения точки.
  5. Ordm;. Векторный способ задания кругового движения.
  6. Ordm;. Задание движения в полярных координатах.
  7. Ordm;. Описание естественного способа задания движения.
  8. Ordm;. Связь между составляющими движениями в сложном движении материальной точки.
  9. Ordm;. Скорость и ускорение точки в круговом движении.
  10. VI. Уравнение прямой, проходящей через две данные точки

Частные случаи движения точки: 1) Прямолинейное: радиус кривизны r= ¥(бесконечно большой) Þ аn=0, a=at. 2) Равномерное криволинейное движ-ие:v=const Þ at=0, a=an. Уск. появляется только за счет изменения направления скорости. Закон движ-ия: s=s0+v×t, при s0=0 v=s/t.

3) Равномерное прямолинейное движ-ие: а=at=an=0. Единственное движ-ие, где а=0.

4) Равнопеременное криволинейное движ-ие: at=const, v=v0+at×t, . При равноуск. движении знаки у at и v одинаковы, при равнозамедленном – разные.

Простейшие движения твердого тела: поступательное и вращение вокруг неподвижной оси. Поступательное движение тела – такое движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается, оставаясь параллельное самой себе. При поступат. движ. все точки тела описывают одинаковые траектории и имеют в каждый момент времени одинаковые по модулю и направлению скорости и ускорения. Вращательное движение тела – такое движение твердого тела, при котором все точки, принадлежащие некоторой прямой, неизменно связанной с телом, остаются неподвижными. Эта прямая называется осью вращения тела. При этом движении все точки тела движутся в плоскостях, перпендикулярных оси вращения, и описывают окружности, центры которых лежат на оси вращения. Урав-ние (закон) вращательного движ.: j=f(t) – угол поворота тела в радианах. (1 рад= 180о/p=57,3о).

 

7.) Поступательное движение ТВ. Тела . скорость и ускорение

Поступательное движение твердого тела – это движение, при котором любая прямая, связанная с телом, при его движении остается параллельной своему начальному положению.

Примеры поступательного движения: движение педалей велосипеда относительно его рамы, движение поршней в цилиндрах двигателя внутреннего сгорания относительно цилиндров, движение кабин колеса обозрения относительно Земли

Теорема. При поступательном движении твердого тела траектории, скорости и ускорения точек тела одинаковы.

Доказательство.

Если выбрать две точки твердого тела А и В (рисунок 1.2), то радиусы-векторы этих точек связаны соотношением

Траектория точки А – это кривая, которая задается функцией rA(t), а траектория точки B – это кривая, которая задается функцией rB(t). Траектория точки B получается переносом траектории точки A в пространстве вдоль вектора AB, который не меняет своей величины и направления во времени (AB = const). Следовательно, траектории всех точек твердого тела одинаковы.



Продифференцируем по времени выражение

Получаем

 

 

Рис. 1.2

 

Продифференцируем по времени скорость и получим выражение aB = aA. Следовательно, скорости и ускорения всех точек твердого тела одинаковы.

Для задания поступательного движения твердого тела достаточно задать движение одной из его точек:

 


Дата добавления: 2015-04-15; просмотров: 24; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Касательное и нормальное ускорение точки | Основные характеристики вращательного движения
lektsii.com - Лекции.Ком - 2014-2018 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты