Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Цепь с последовательным соединением элементов

Читайте также:
  1. II. Двигатель с последовательным возбуждением. (Сериесный ДПТ)
  2. А- % отношение оформленных элементов крови к объему плазмы
  3. Анализ цепей с последовательным, параллельным и смешанным соединениями. Векторные диаграммы на комплексной плоскости. Топографическая диаграмма
  4. Анализ цепи переменного тока с параллельным соединением двух катушек индуктивности.
  5. Анимация элементов Web-страниц
  6. Атомов элементов
  7. Б) Основа работы и расчета изгибаемых элементов
  8. Базовые показатели для расчета периода оборота отдельных элементов оборотных средств
  9. Балки перекрытий из мелкоразмерных элементов
  10. Биодиагностика почвенных микро- и макроэлементов

Проведем анализ работы электрической цепи с последовательным соединением элементов R, L, С.

Положим, что в этой задаче заданы величины R, L, С, частота f, напряжение U. Требуется определить ток в цепи и напряжение на элементах цепи. Из свойства последовательного соединения следует, что ток во всех элементах цепи одинаковый. Задача разбивается на ряд этапов.

1. Определение сопротивлений.

Реактивные сопротивления элементов L и С находим по формулам

XL = ωL, XC = 1 / ωC, ω = 2πf.

Полное сопротивление цепи равно

,

угол сдвига фаз равен

(2.42)

φ = arctg((XL - XC) / R),

2. Нахождение тока. Ток в цепи находится по закону Ома

I = U / Z, ψi = ψu + φ.

Фазы тока и напряжения отличаются на угол φ.

3. Расчет напряжений на элементах. Напряжения на элементах определяются по формулам

UR = I R, ψuR = ψi ;

UL = I XL, ψuL = ψi + 90° ;

UC = I XC, ψuC = ψi - 90°.

Для напряжений выполняется второй закон Кирхгофа в векторной форме.

Ú = ÚR + ÚL + ÚC.

4. Анализ расчетных данных. В зависимости от величин L и С в формуле (2.42) возможны следующие варианты: XL > XC; XL < XC; XL = XC.

Для варианта XL > XC угол φ > 0, UL > UC. Ток отстает от напряжения на угол φ. Цепь имеет активно-индуктивный характер. Векторная диаграмма напряжений имеет вид (рис. 2.16).

Для варианта XL < XC угол φ < 0, UL < UC. Ток опережает напряжение на угол φ. Цепь имеет активно-емкостный характер. Векторная диаграмма напряжений имеет вид (рис. 2.17).

Для варианта XL = XC угол φ = 0, UL = UC. Ток совпадает с напряжением. Цепь имеет активный характер. Полное сопротивление z=R наименьшее из всех возможных значений XL и XC. Векторная диаграмма напряжений имеет вид (рис. 2.18).

Этот режим называется резонанс напряжений (UL = UC). Напряжения на элементах UL и UC могут значительно превышать входное напряжение.

Пример.

U = 220 B, f = 50 Гц, R = 22 Ом, L = 350 мГн, С = 28,9 мкФ.

XL = ωL = 2πf L = 2 · 3,14 · 50 · 0,35 = 110 Ом;
XC = 1 / ωC = 1 / (2πf C) = 110 Ом;
Z = R = 22 Ом, φ=0, I = U / R = 220 / 22 = 10 А, ψu = ψi;
UL = UC = I XL = 10 · 110 = 1100 В.



В приведенном примере UL и UС превышают входное напряжение в 5 раз.


Дата добавления: 2015-04-16; просмотров: 26; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Элемент L (индуктивность) | 
lektsii.com - Лекции.Ком - 2014-2018 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты