Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Рестриктазы 1 страница




ВОПРОСЫ

к государственному экзамену для студентов

группы 5 БХТ 2013/2014 уч. г.

(дисциплина: Биохимия и биотехнология)

1. Основные принципы промышленного осуществления биотехнологических процессов. Требования к культурам микроорганизмов и клеточным линиям.

2. Белки как объекты биотехнологии. Основные продуценты пищевого белка. Получение биотехнологического белка и его применение.

3. Технология ферментных препаратов. Глубинный и поверхностный способы культивирования продуцентов. Ферментные биопрепараты микроскопических грибов и плесеней.

4. Иммобилизованные ферменты. Технология, применение в производстве, медицине, органическом синтезе. Способы иммобилизации.

5. Биопрепараты для сельского хозяйства (энтомопатогенные препараты; бактериальные удобрения; антибиотики).

6. Биотехнология в пищевой промышленности. Основные объекты и продукты переработки. Биотехнология молочных продуктов: основные процессы.

7. Технология биохимического производства этилового спирта. Основные параметры и процессы. Субстраты и продуценты этанола.

8. Биогеотехнология (повышение отдачи угля, нефтепродуктов, металлов). Основные группы микроорганизмов, применяемые в биогеотехнологии.

9. Биотехническое решение экологических проблем. Биодеградация органических веществ. Плазмиды бактерий как носители информации о ферментах биодеградации.

10. Аэробная и анаэробная системы очистки стоков. Активный ил. Современные установки для очистки и обеззараживания сточных вод с применением микроорганизмов и ферментов.

11. Генетическая инженерия: сущность и задачи. Введение и экспрессия чужеродных ДНК в клетках реципиентов. Значение в медицине и сельском хозяйстве.

12. Основные практические направления и перспективы генноинженерной биотехнологии животных. Трансгенные организмы и их значение.

 

Составитель: доц. Оразов О.Э.

 

 

Возможные ответы.

  1. Основные принципы осуществления биотехнологических процессов

 

Существует 5 стадий биотехнологического производства.

Две начальные стадии включают подготовку сырья и биологически действующего начала. Они обычно состоят из приготовления раствора субстрата с заданными свойствами (рН, температура, концентрация) и подготовки партии ферментного препарата данного типа, ферментного или иммобилизованного. При осуществлении микробиологического синтеза необходимы стадии приготовления питательной среды и поддержания чистой культуры, которая могла бы постоянно или по мере необходимости использоваться в процессе. Соблюдение стерильности в микробиологических лабораториях.

Третья стадия - стадия ферментации, на которой происходит образование целевого продукта. На этой стадии идет микробиологическое превращение компонентов питательной среды сначала в биомассу, затем, если это необходимо, в целевой метаболит. Важно соблюдение режимов и регламента работы, стерильности ферментеров и аппаратов, в которых проводится наработка продукта.

На четвертом этапе из культуральной жидкости выделяют и очищают целевые продукты. Важны отработка наиболее дешевых и качественных процедур очистки с минимальной потерей наработанного продукта. Заключительная стадия биотехнологического производства - приготовление товарных форм продуктов. Общим свойством большинства продуктов микробиологического синтеза является их недостаточная стойкость к хранению, поскольку они склонны к разложению и в таком виде представляют прекрасную среду для развития посторонней микрофлоры. Кроме того, препараты для медицинских целей требуют специальных решений на стадии расфасовки и укупорки, так как должны быть стерильными. Ниже приводятся характеристики каждой из стадий промышленного микробиологического синтеза.

5.1. Технология приготовления питательных сред для биосинтеза

Предферментационная стадия

На предферментационной стадии осуществляют хранение и подготовку культуры продуцента (инокулята), получение и подготовку питательных субстратов и сред, ферментационной аппаратуры, технологических и рециркулируемых воды и воздуха.

Поддержание и подготовка чистой культуры. В отделении чистой культуры осуществляют хранение производственных штаммов и обеспечивают их реактивацию и наработку инокулята в количествах, требуемых для начала процесса. При выращивании посевных доз инокулята применяют принцип масштабирования, то есть проводят последовательное наращивание биомассы продуцента в колбах, бутылях, далее в серии последовательных ферментеров.

Приготовление питательных сред

Основу питательных сред для культивирования микроорганизмов составляют источники углерода. Кроме углерода клетки микроорганизмов в процессе роста испытывают потребность в азоте, фосфоре, макро- и микроэлементах. Все вещества этого рода находятся в питательных средах в виде солей.

Жидкие и твердые источники углерода обычно вводят в уже готовую питательную среду непосредственно перед ферментацией.

Важнейшим элементом приготовления питательных сред является соблюдение требований асептики. Это либо создание заданного значения рН, обеспечивающего подавление посторонних микроорганизмов, либо полная стерилизация всех подаваемых потоков и самого биореактора. Для стерилизации газовых потоков (в первую очередь воздуха) используют процесс фильтрации через специальные волокнистые фильтры.

Жидкостные потоки стерилизуют различными методами, из которых практический интерес представляют термический, радиационный, фильтрационный и отчасти химический. Термический - самый распространенный, при температурах порядка 120-150°С. Радиационный -излучение, применяется редко из-за трудностей создания и эксплуатации мощных источников этого излучения. В отдельных случаях применяют химические стерилизующие агенты (вещества с ярко выраженным асептическим действием).

5.2. Поддержание чистой культуры

В технологическом процессе используются полезные свойства штамма, следовательно, необходимо сохранять и, если возможно, улучшать его производственные качества. Поэтому в биотехнологическом производстве имеется отделение чистой культуры. Такое отделение проводит лабораторные операции по контролю и сохранению чистой культуры, а также маломасштабное культивирование для постоянной передачи штамма на стадию ферментации.

5.3. Ферментация

Стадия ферментации - центральная среди этапов промышленного производства. Под ферментацией понимают всю совокупность последовательных операций от внесения в заранее приготовленную и термостатированную среду инокулята до завершения процессов роста, биосинтеза или биотрансформации.

Ферментация проходит в специальных емкостях, называемых ферментерами или биореакторами. Основными элементами ферментера являются двойные стенки, промежуток между которыми заполняется охлаждающей или нагревающей жидкостью, входные отверстия для газовых и жидких потоков, система контроля за составом питательной среды и условиями внутри реактора.

Технологическое оформление процессов промышленной биотехнологии в значительной мере определяется отношением микроорганизма-продуцента к кислороду. В аэробных условиях микробиологический синтез протекает со значительным тепловыделением, что вызывает необходимость отвода тепла из аппаратов большого объема (сотни и тысячи кубометров). Наиболее приемлемый на практике способ теплоотвода - охлаждение водой через змеевики, рубашки и др. устройства.

Важно также поддерживать определенный состав питательной среды. В непрерывных процессах биосинтеза задача технолога сводится к поддержанию концентрации всех питательных веществ (и кислорода) и дозированному введению кислоты или щелочи для рН-статирования системы на заданном уровне.

5.4. Выделение и очистка продуктов

Продукты микробного синтеза поступают из биореактора в виде водных суспензий или растворов, при этом характерно невысокое содержание основного компонента и наличие многих примесных веществ. В большинстве промышленных производств на первом этапе переработки культуральной жидкости производят отделение массы продуцента от жидкой фазы.

Технологические приемы, используемые для отделения клеток от среды, зависят от природы продуцента. Например, сахаромицеты (хлебопекарные дрожжи) имеют относительно большие клетки и способны флотироваться, поэтому после сгущения биомассы флотацией их отделяют на обычных барабанных вакуум-фильтрах. В дальнейшем биомассу, снятую с фильтра, подвергают прессованию и получают продукт с высоким содержанием живых клеток, имеющих высокую хлебопекарную активность. Дрожжи же рода Candida, служащие источником кормового белка плохо флотируются и фильтруются. Поэтому дрожжи, растущие на углеводородах, а также бактерии-продуценты белка на основе метана и метанола, на первом этапе сепарируются, причем в несколько ступеней. Оставшаяся вода удаляется путем выпаривания, а все компоненты жидкой фазы остаются в конечном продукте.

Для выделения и очистки продуктов, находящихся внутри клеток продуцента (например, интерферонов, гормонов) вводится стадия разрушения клеточных оболочек (дезинтеграция биомассы); обычно для этого применяются механические, химические (растворители типа толуола) или комбинированные методы.

Продукты

Ассортимент продуктов, получаемых в биотехнологических процессах, чрезвычайно широк. По разнообразию и объемам производства на первом месте стоят продукты, получаемые в процессах, основанных на жизнедеятельности микроорганизмов. Эти продукты подразделяются на три основные группы:

1я группа — биомасса, которая является целевым продуктом (белок одноклеточных) или используется в качестве биологического агента (биометаногенез, бактериальное выщелачивание металлов);

2я группа — первичные метаболиты — это низкомолекулярные соединения, необходимые для роста микроорганизмов в качестве строительных блоков макромолекул, коферментов (аминокислоты, витамины, органические кислоты);

3я группа — вторичные метаболиты (идиолиты) — это соединения, не требующиеся для роста микроорганизмов и не связанные с их ростом (антибиотики, алкалоиды, гормоны роста и токсины).

Среди продуктов микробиологического синтеза — огромное количество различных биологически активных соединений, в том числе белковых и лекарственных веществ, ферментов, а также энергоносители (биогаз, спирты) и минеральные ресурсы (металлы), средства для борьбы с вредителями сельскохозяйственных культур (биоинсектициды) и биоудобрения.

5.5. Получение товарных форм препаратов

Все товарные формы биопрепаратов с точки зрения технологии их получения можно разделить на три основные группы.

Биопрепараты, имеющие в товарном продукте в качестве основного компонента жизнеспособные микроорганизмы. К этой группе относятся средства защиты растений, бактериальные удобрения, закваски для силосования кормов, биодеграданты, другие активные средства биотрансформации.

Биопрепараты, в состав которых входит инактивированная биомасса клеток и продукты ее переработки. Это кормовые дрожжи, грибной мицелий и т.д.

Биопрепараты на основе очищенных продуктов метаболизма микроорганизмов. К ним относятся витамины, аминокислоты, ферменты, антибиотики, биолипиды, олигосахариды, продукты комплекс ной переработки микробных масс и метаболитов.

В зависимости от принятых на предыдущей стадии решения товарные формы представляют собой либо сложную смесь, содержащую некоторое количество основного вещества, либо высокоочищенный препарат, отвечающий ряду специальных требований. Продукт может выпускаться в жидком (например, жидкий концентрат лизина) или сухом виде (белково-витаминный концентрат, энтомопатогенные препараты, кормовой концентрат лизина).

Стадия фасовки рассмотренных комплексных препаратов заключается в помещении их в тару (мешки, барабаны и т.п.), размеры и тип которой определяются потребностями заказчика и свойствами продукта (его слеживаемостью, гигроскопичностью, стойкостью к загниванию и т.д.). Другие (более жесткие) требования предъявляются к медицинским препаратам и биохимическим реактивам.

 

  1. Белки как объекты биотехнологии. Основные продуценты пищевого белка. Получение биотехнологического белка и его применение.

Белковые вещества с различными свойствами играют важную роль в биотехнологии. В связи с возможной нехваткой продовольствия одно из направлений современной биотехнологии – производство пищевого и кормового белка. Наиболее интенсивное развитие получили промышленные методы наработки так называемых кормовых дрожжей, применяемых в виде сухой биомассы как источник белка и витаминов в животноводстве. Кормовые дрожжи содержат значительное количество белка (до 50—55%), в состав которого входят незаменимые аминокислоты, например лизин, триптофан, метионин; они богаты витаминами, многими микроэлементами. Для выращивания кормовых дрожжей использовали преимущественно дешёвое углеводное сырьё — гидролизаты отходов деревообрабатывающей промышленности, непищевых растительных материалов (подсолнечная лузга, стержни кукурузных початков и т.п.), сульфитные щелока, различные виды барды и т.д. Ныне в крупных промышленных масштабах организуется производство дрожжей на углеводородах (н-алканах, газойле, различных фракциях нефти). Большие запасы этого сырья позволяют планировать крупнотоннажное производство микробной биомассы. Для получения белково-витаминной биомассы изучается также возможность применения бактерий. Многие бактерии хорошо растут на углеводородах, в частности газообразных (например, на метане), а также на др. источниках углерода (например, на метаноле и уксусной кислоте)

Производство белка микроорганизмов

Производство микробной биомассы - самое крупное микробиологическое производство. Микробная биомасса может быть хорошей белковой добавкой для домашних животных, птиц и рыб. Производство микробной биомассы особенно важно для стран, не культивирующих в больших масштабах сою (соевую муку используют как традиционную белковую добавку к кормам).

При выборе микроорганизма учитывают удельную скорость роста и выход биомассы на данном субстрате, стабильность при поточном культивировании, величину клеток. Клетки дрожжей крупнее, чем бактерий, и легче отделяются от жидкости при центрифугировании. Можно выращивать полиплоидные мутанты дрожжей с крупными клетками. В настоящее время известны только две группы микроорганизмов, которым присущи свойства, необходимые для крупномасштабного промышленного производства: это дрожжи рода Candida на n-алканах (нормальных углеводородах) и бактерии Methylophillus methylotrophus на метаноле.

Микроорганизмы можно выращивать и на других питательных средах: на газах, нефти, отходах угольной, химической, пищевой, винно-водочной, деревообрабатывающей промышленности. Экономические преимущества их использования очевидны. Так, килограмм переработанной микроорганизмами нефти дает килограмм белка, а, скажем, килограмм сахара - всего 500 граммов белка. Аминокислотный состав белка дрожжей практически не отличается от такового, полученного из микроорганизмов, выращенных на обычных углеводных средах. Биологические испытания препаратов из дрожжей, выращенных на углеводородах, которые проведены и у нас в стране и за рубежом, выявили полное отсутствие у них какого-либо вредного влияния на организм испытуемых животных. Опыты были проведены на многих поколениях десятков тысяч лабораторных и сельскохозяйственных животных. В непереработанном виде дрожжи содержат неспецифические липиды и аминокислоты, биогенные амины, полисахариды и нуклеиновые кислоты, а их влияние на организм пока еще плохо изучено. Поэтому и предлагается выделять из дрожжей белок в химически чистом виде. Освобождение его от нуклеиновых кислот также уже стало несложным.

В современных биотехнологических процессах, основанных на использовании микроорганизмов, продуцентами белка служат дрожжи, другие грибы, бактерии и микроскопические водоросли.

С технологической точки зрения наилучшими из них являются дрожжи. Их преимущество заключается прежде всего в "технологичности": дрожжи легко выращивать в условиях производства. Они характеризуются высокой скоростью роста, устойчивостью к посторонней микрофлоре, способны усваивать любые источники питания, легко отделяются, не загрязняют воздух спорами. Клетки дрожжей содержат до 25% сухих веществ. Наиболее ценный компонент дрожжевой биомассы - белок, который по составу аминокислот превосходит белок зерна злаковых культур и лишь немного уступает белкам молока и рыбной муки. Биологическая ценность дрожжевого белка определяется наличием значительного количества незаменимых аминокислот. По содержанию витаминов дрожжи превосходят все белковые корма, в том числе и рыбную муку. Кроме того, дрожжевые клетки содержат микроэлементы и значительное количество жира, в котором преобладают ненасыщенные жирные кислоты. При скармливании кормовых дрожжей коровам повышаются удои и содержание жира в молоке, а у пушных зверей улучшается качество меха. Интерес представляют и дрожжи, обладающие гидролитическими ферментами и способные расти на полисахаридах без их предварительного гидролиза. Использование таких дрожжей позволит избежать дорогостоящую стадию гидролиза полисахаридсодержащих отходов. Известно более 100 видов дрожжей, которые хорошо растут на крахмале как на единственном источнике углерода. Среди них особенно выделяются два вида, которые образуют как глюкоамилазы, так и β-амилазы, растут на крахмале с высоким экономическим коэффициентом и могут не только ассимилировать, но и сбраживать крахмал: Schwanniomyces occidentalis и Saccharomycopsis fibuliger. Оба вида - перспективные продуценты белка и амилолитических ферментов на крахмалсодержащих отходах. Ведутся поиски и таких дрожжей, которые могли бы расщеплять нативную целлюлозу. Целлюлазы обнаружены у нескольких видов, например у Trichosporon pullulans, однако активность этих ферментов низкая и о промышленном использовании таких дрожжей говорить пока не приходится. Дрожжи из рода Kluyveromyces хорошо растут на инулине - основном запасном веществе в клубнях топинамбура - важной кормовой культуры, которая также может быть использована для получения дрожжевого белка.

В последнее время в качестве продуцентов белка стали использовать бактерии, которые отличаются высокой скоростью роста и содержат в биомассе до 80% белка. Бактерии хорошо поддаются селекции, что позволяет получать высокопродуктивные штаммы. Их недостатками являются трудная осаждаемость, обусловленная малыми размерами клеток, значительная чувствительность к фаговым инфекциям и высокое содержание в биомассе нуклеиновых кислот. Последнее обстоятельство неблагоприятно только в том случае, если предусматривается пищевое использование продукта. Снижать содержание нуклеиновых кислот в биомассе, употребляемой на корм животным, нет необходимости, так как мочевая кислота и ее соли, образующиеся при разрушении азотистых оснований, превращаются в организме животных в алантоин, который легко выделяется с мочой. У человека избыток солей мочевой кислоты может способствовать развитию ряда заболеваний.

Следующую группу продуцентов белка составляют грибы. Они привлекают внимание исследователей благодаря способности утилизировать самое разнообразное по составу органическое сырье: мелассу, молочную сыворотку, сок растений и корнеплодов, лигнин- и целлюлозосодержащие твердые отходы пищевой, деревообрабатывающей, гидролизной промышленности. Грибной мицелий богат белковыми веществами, которые по содержанию незаменимых аминокислот ближе всего к белкам сои. Вместе с тем белок грибов богат лизином, основной аминокислотой, недостающей в белке зерновых культур. Это позволяет на основе зерна и грибной биомассы составлять сбалансированные пищевые и кормовые смеси. Грибные белки имеют достаточно высокую биологическую ценность и хорошо усваиваются организмом.

Положительным фактором является и волокнистое строение выращенной культуры. Это позволяет имитировать текстуру мяса, а с помощью различных добавок - его цвет и запах. Хранят грибной мицелий обычно в замороженном виде.

В качестве субстрата грибами используются глюкоза и другие питательные вещества, а общим источником азота служат аммиак и аммонийные соли. После завершения стадии ферментации культуру подвергают термообработке для уменьшения содержания рибонуклеиновой кислоты, а затем отделяют мицелий методом вакуумного фильтрования.

Источниками белковых веществ могут служить и водоросли. При фототрофном способе питания и образования биомассы они используют углекислый газ атмосферы. Выращивают водоросли, как правило, в поверхностном слое прудов, где с площади 0,1 га можно получить столько же белка, сколько с 14 га посевов фасоли. Белок водорослей пригоден не только для кормовых, но и пищевых целей.

Наконец, хорошими продуцентами белка являются рясковые, которые накапливают протеина до 45% от сухой массы, а также до 45% углеводов. Однако, несмотря на свои малые размеры, они не принадлежат к вышеперечисленным производителям белка (микроорганизмам), так как не только являются многоклеточными организмами, но и относятся к высшим растениям.

В США, Японии, Канаде, ФРГ, Великобритании разработаны технологические процессы получения белка на природном газе. Выход биомассы в этом случае может составлять 66% от массы субстрата. В разработанном в Великобритании процессе используется смешанная культура: бактерии Methylomonas, усваивающие метан, Hypomicrobium и Pseudomonas, усваивающие метанол, и два вида неметилотрофных бактерий. Культура характеризуется высокой скоростью роста и продуктивностью. Главные достоинства метана (кстати сказать, основного компонента природного газа) - доступность, относительно низкая стоимость, высокая эффективность преобразования в биомассу метаноокисляющими микроорганизмами, значительное содержание в биомассе белка, сбалансированного по аминокислотному составу. Бактерии, растущие на метане хорошо переносят кислую среду и высокие температуры, в связи с чем устойчивы к инфекциям.

Исключительно доступным и достаточно дешевым источником углеводов для производства микробного белка является растительная биомасса. В качестве продуцентов используют штаммы Candida scotti и C.tropicalis. Активный катаболизм лактозы особенно характерен для дрожжей из рода Kluyveromyces. Эти дрожжи можно использовать для получения на молочной сыворотке кормового белка, этанола, препаратов β-глюкозидазы.

Применяя обычные технологические линии по производству синтетических волокон, можно получать из искусственных белков длинные нити, которые после пропитки их формообразующимн веществами, придания им соответствующего вкуса, цвета и запаха могут имитировать любой белковый продукт. Таким способом уже получены искусственное мясо (говядина, свинина, различные виды птиц), молоко, сыры и другие продукты. Они уже прошли широкую биологическую апробацию на животных и людях и вышли из лабораторий на прилавки магазинов США, Англии, Индии, стран Азии и Африки. Только в одной Англии их производство достигает примерно 1500 тонн в год. Интересно, что белковую часть школьных обедов в США уже разрешено на 30 процентов заменять искусственным мясом, созданным на основе соевого белка.

 

  1. Технология ферментных препаратов. Глубинный и поверхностный способы культивирования продуцентов. Ферментные биопрепараты микроскопических грибов и плесеней.

Ферменты, синтезируемые микроорганизмами, и создаваемые на их основе ферментные препараты приобрели большое значение в народном хозяйстве, особенно в пищевой промышленности. Продуцентами ферментов — протеаз, амилаз, фосфатаз, целлюлаз, пектиназ, глюкозооксидазы, липаз, каталазы — служат многие мицелиальные грибы, некоторые актиномицеты и бактерии. В зависимости от локализации фермента подвергают обработке микробную массу или фильтрат, свободный от микробных клеток. Получение чистых ферментных препаратов связано со значительными технологическими трудностями. Такие препараты обычно очень дороги; поэтому в промышленности используют комплексные препараты, содержащие, например, протеазы и липазы, протеазы и амилазы.

Основную часть ферментов, получаемых промышленным способом, составляют гидролазы. К ним относятся, в первую очередь амилолитические ферменты: α-амилаза, β-амилаза, глюкоамилаза. Их основная функция - гидролиз крахмала и гликогена. Крахмал при гидролизе расщепляется на декстрины, а затем до глюкозы. Эти ферменты применяются в спиртовой промышленности, хлебопечении.

Протеолитические ферменты образуют класс пептидгидролаз. Их действие заключается в ускорении гидролиза пептидных связей в белках и пептидах. Важная их особенность - селективный характер действия на пептидные связи в белковой молекуле. Например, пепсин действует только на связь с ароматическими аминокислотами, трипсин - на связь между аргинином и лизином. В промышленности протеолитические ферменты классифицируют по способности проявлять активность в определенной области рН:

рН 1.5 - 3.7 - кислые протеазы;

рН 6.5 - 7.5 - протеазы;

pH > 8.0 - щелочные протеазы.

Протеазы находят широчайшее применение в разных отраслях промышленности:

  • мясная - для смягчения мяса;
  • кожевенная - смягчение шкур;
  • кинопроизводство - растворение желатинового слоя при регенерации пленок;
  • парфюмерная - добавки в зубную пасту, кремы, лосьоны;
  • производство моющих средств - добавки для удаления загрязнений белковой природы;
  • медицина - при лечении воспалительных процессов, тромбозов и т.д.

Пектолитические ферменты уменьшают молекулярную массу и снижают вязкость пектиновых веществ. Пектиназы делятся на две группы - гидролазы и трансэлиминазы. Гидралазы отщепляют метильные остатки или разрывают гликозидные связи. Трансэлиминазы ускоряют негидролитическое расщепление пектиновых веществ с образованием двойных связей. Применяются в текстильной промышленности (вымачивание льна перед переработкой), в виноделии - осветление вин, а также при консервировании фруктовых соков.

Целлюлолитические ферменты очень специфичны, их действие проявляется в деполимеризации молекул целлюлозы. Обычно используются в виде комплекса, доводящего гидролиз целлюлозы до глюкозы (в гидролизной промышленности). В медицинской промышленности их используют для выделения стероидов из растений, в пищевой - для улучшения качества растительных масел, в сельском хозяйстве - как добавки в комбикорма для жвачных животных.

Существует ряд факторов, влияющих на биосинтез ферментов. В первую очередь, к ним относится генетический. Состав и количество синтезируемых ферментов наследственно детерминированы. Применяя мутагены можно изменить генетические свойства микроорганизмов и получить штаммы с ценными для промышленности свойствами. К мутагенным факторам относятся ионизирующее и неионизирующее излучения, изотопы, антибиотики, другие химические соединения, преобразующие наследственные элементы клетки. Несмотря на определяющую роль генетического фактора в биосинтезе ферментов, производительность биотехнологических процессов зависит и от состава питательной среды. При этом важно не только наличие источников основных питательных веществ, но и веществ, играющих роль индукторов или репрессоров биосинтеза данного конкретного фермента или их групп.

По характеру культивирования все технологические процессы производства ферментных препаратов делятся на две большие группы: глубинный и поверхностный методы.

Глубинный метод производства ферментов

В этом случае микроорганизмы выращиваются в жидкой питательной среде. Технически более совершенен, чем поверхностный, так как легко поддается автоматизации и механизации. Концентрация фермента в среде при глубинном культивировании обычно значительно ниже, чем в водных экстрактах поверхностной культуры. Это вызывает необходимость предварительного концентрирования фильтрата перед его выделением.

Биосинтез ферментов в глубинной культуре протекает в течение 2-4 суток при непрерывной подаче воздуха и перемешивании. Высокая концентрация питательных веществ на первых этапах могут тормозить рост биомассы продуцента, поэтому часто свежая среда или некоторые её компоненты вводятся в ферментер на стадии активного роста. Температурный оптимум находится в интервале 22-32оС. В современных технологических процессах ведется непрерывное автоматическое определение содержания в среде углеводов, количества образовавшихся метаболитов и концентрации клеток. Данные поступают в компьютер, который определяет стратегию коррекции процесса и автоматически регулирует его. Этим достигается максимальная производительность и наилучшее качество продуктов.

Поверхностный метод наработки ферментов

При поверхностном методе культура растет на поверхности твердой увлажненной питательной среды. Мицелий полностью обволакивает и довольно прочно скрепляет твердые частицы субстрата, из которого получают питательные вещества. Поскольку для дыхания клетки используют кислород, то среда должна быть рыхлой, а слой культуры-продуцента небольшим. Выращивание производственной культуры происходит обычно в асептических условиях, но среду и кюветы необходимо простерилизовать. Перед каждой новой загрузкой также необходима стерилизация оборудования.

Преимущества поверхностной культуры: значительно более высокая конечная концентрация фермента на единицу массу среды (при осахаривании крахмала 5 кг поверхностной культуры заменяют 100 кг культуральной жидкости), поверхностная культура относительно легко высушивается, легко переводится в товарную форму.


Поделиться:

Дата добавления: 2015-04-16; просмотров: 127; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты