Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


ГЛАВА 1. Стратегия переноса функциональной единицы наследственности (гена) из одного организма в другой была разработана американскими учеными Стэнли Коэном и




 

Стратегия переноса функциональной единицы наследственности (гена) из одного организма в другой была разработана американскими учеными Стэнли Коэном и Гербертом Бойером в 1973 г. И Коэну, и Бойеру, и многим другим было ясно, что технология рекомбинантных ДНК предоставляет огромные возможности. Как в то время отмечал Коэн, «...есть надежда, что удастся ввести в [бактериальную клетку] E. coli гены, ассоциированные с метаболическими или синтетическими функциями, присущими другим биологическим видам, например гены фотосинтеза или продукции антибиотиков».

Однако одним из первых откликов научного мира на создание новой технологии был мораторий на некоторые биотехнологические эксперименты, считавшиеся потенциально опасными. Запрет на собственные исследования был провозглашен группой молекулярных биологов, включая Коэна и Бойера. Они считали, что объединение генов, происходящих из двух разных организмов, может случайно привести к созданию нового организма с нежелательными и опасными свойствами. Прошло несколько лет, у ученых накопился опыт работы с новой технологией, были согласованы инструкции по обеспечению безопасности этих работ, и страсти постепенно улеглись. Временное прекращение реализации некоторых научных проектов, связанных с рекомбинантными ДНК, не уменьшило энтузиазма генных инженеров. Новая технология продолжает привлекать беспрецедентное внимание как со стороны общественности, так и со стороны ученых.

Весть о клонировании генов, осуществленном Коэном и Бойером, облетела весь мир. Многие исследователи немедленно оценили все преимущества этой стратегии и создали огромное количество методик, следуя которым, можно было с высокой эффективностью и относительно просто идентифицировать, выделять, охарактеризовывать и использовать гены. Эти технологические разработки внесли значительный вклад в развитие практически всех биологических дисциплин, включая науку о поведении животных, биологию развития, молекулярную эволюцию, клеточную биологию и генетику человека, однако наиболее глубокие изменения произошли в области биотехнологии.

Возникновение молекулярной биотехнологии

В начале 70-х годов традиционная биотехнология как научная дисциплина была не слишком известна; исследования в этой области в основном проводились и отделах инженерной химии и иногда в рамках социальных микробиологических программ. В широком смысле биотехнология занимается производством коммерческих продуктов, образуемых микроорганизмами в результате их жизнедеятельности. Более формально биотехнологию можно определить как «применение научных и инженерных принципов к переработке материалов живыми организмами с целью создания товаров и услуг». В историческом смысле биотехнология возникла тогда, когда дрожжи были оперные использованы при производстве пина, а бактерии — для получения йогурта.

Термин «биотехнология» был придуман в 19J7 г. венгерским инженером Карлом Эреки для описания процесса крупномасштабного выращивания свиней с использованием в качестве корма сахарной свеклы. По определению Эреки, биотехнология — это «все виды работ, при которых из сырьевых материалов с помошью живых организмов производятся те или иные продукты». Однако это совершенно точное определение не получило широкого распространения. Долгое нрсмя термин «биотехнология» относился к двум очень разным дисциплинам. С одной стороны, его употребляли, говоря о промышленной ферментации, с другой — применительно к той области, которая сейчас называется эргономикой. Такой двойственности пришел конец в 1961 г., когда шведский микробиолог Карл Гёрен Хеден порекомендовала изменить название научного журнала "Journal of Microbiological and Biochemical Engineering and Technology" («Журнал микробиологической и химической инженерии и технологии»), специализирующегося на публикации работ по прикладной микробиологии и промышленной ферментации, на "Biotechnology and Bioengineering'' («Биотехнология и биоинженерия»). С этого момента биотехнология оказалась четко и необратимо связана с исследованиями в области «промышленного производства товаров и услуг при участии живых организмов, биологических систем и процессов»


Молекулярно-биотехнологическая революция 17

 

Рис. 1.1. Основные этапы биотехнологического процесса. Термин был введен Карлом Эреки и относился к крупномасштабному получению свинины (конечный продукт) с использованием дешевой сахарной свеклы (сырье) в качестве корма для свиней (биотрансформация).

и встала на прочный фундамент микробиологии, биохимии и химической инженерии.

Промышленный биотехнологический процесс, в котором для производства коммерческих продуктов используются микроорганизмы, обычно состоит из трех ключевых этапов (рис. 1.1.).

1. Исходная обработка: обработка сырья таким образом, чтобы его можно было использовать как источник питательных веществ для микроорганизма-мишени.

2. Ферментация и биотрансформация; рост микроорганизма-мишени в большом (обычно более 100 л) биореакторе (ферментация) с последующим образованием нужного метаболита, например антибиотика, аминокислоты или белка (биотрансформация).

3. Конечная обработка: очистка нужного вещества от компонентов культуральной среды или от клеточной массы.

Целью биотехнологических исследований является максимальное повышение эффективности каждого из этих этапов и поиск микроорганизмов, с помощью которых можно получить нужные вещества (пищевые добавки, антибиотики и т. д.). В 60—70-е годы все эти исследования касались только исходной обработки, устройства биореакторов и получения конечного продукта. Благодаря этому был усовершенствован инструментальный контроль процесса ферментации и значительно расширены возможности крупномасштабного культивирования, что позволило повысить эффективность производства некоторых продуктов.

Наиболее трудным для оптимизации был этап биотрансформации. Когда использовались природные микробные штаммы, выход конечного продукта часто оказывался намного ниже оптимального. Поэтому предпринимались попытки изменить генетическую конституцию существующих штаммов-продуцентов с помощью химического мутагенеза или ультрафиолетового облучения. При таком подходе уровень повышения продукции обычно лимитировался чисто биологическими факторами. Например, если мутантный штамм синтезировал слишком много того или иного вещества, часто это отрицательно влияло на прочие метаболические процессы и приводило к угнетению роста культуры при крупномасштабном культивировании. Несмотря на это традиционные стратегии «индуцированного мутагенеза и селекции», направленные на усовершенствование штамма-продуцента, были исключительно плодотворны для многих процессов, например для производства антибиотиков.

Традиционные схемы генетического усовершенствования бактерий включают скрининг, отбор и тестирование огромного количества колоний, поэтому такие схемы высокозатратны и занимают много времени. Более того, при этом можно рассчитывать только на усовершенствование уже существующих, переливаемых по наследству свойств штамма, а не на расширение его генетических возможностей. И все же к концу 70-х годов таким образом были усовершенствованы производственные процессы получения целого ряда продуктов.



Поделиться:

Дата добавления: 2015-04-16; просмотров: 98; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты