Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Понятие о многофазной системе (трехфазовой).




Трехфазной называется электрическая цепь, в ветвях которой действуют три одинаковые по амплитуде синусоидальные ЭДС, имеющие одну и ту же частоту, сдвинутые по фазе одна относительно другой на угол 2π/3 (120°).

Рис. 3.1. Положительные направления (а) и графики (б) ЭДС синхронного генератора

В качестве источника электрической энергии в трехфазных цепях используются синхронные генераторы (см. § 11.1). В трех обмотках статора (якоря) синхронного генератора, называемых его фазами (рис. 3.1, а), и индуктируются указанные три ЭДС.

При указанных на рис. 3.1, а положительных направлениях ЭДС (от концов х, у и z фаз к их началам а, b и с) ЭДС изменяются в соответствии с выражениями

(3.1)

еа = Еаm sin ωt, еb = Ebm sin (ωt - 2π/3), ес = Естsin (ωt - 4π/3).

На рис. 3.1,5 приведены графики ea(t), eb(t) и ec(t).

Совместив вектор ЭДС Еа с осью действительных величин комплексной плоскости (рис. 3.2, а), получим следующие выражения ЭДС в комплексной форме:

(3,2)

Еа = Еа,
Eb = Ebe-j2π/3 = Eb cos( - 2π/3) + jEbsin( - 2π/3) = - Eb - j √3 Eb;
Ec = Ece-j4π/3 = Ec cos( - 4π/3) + jEcsin( - 4π/3) = - Ec + j √3 Ec.
}

 

Рис. 3.2. Векторные диаграммы ЭДС генератора в комплексной плоскости

Следует заметить, что при изображении векторных диаграмм вектор ЭДС Еа принято направлять вертикально вверх, что соответствует повороту комплексной плоскости на 90° против вращения часовой стрелки. При этом оси действительных и мнимых величин обычно не указывают (рис. 3.2, б).

Пользуясь положительными направлениями и зная законы изменения ЭДС или соответствующие им графики, можно определить мгновенные значения и действительные направления ЭДС в любой момент времени. Например, при t = 0 еa = 0,

еb = Ebm sin ( - 2π/3) = - √3 Ebm, ес = Ест sin ( - 4π/3) = √3 Ест.

Так как ес > 0, а еb < 0, то при t = 0 ЭДС ес направлена в действительности так, как показано на рис. 3.1, а, а ЭДС еb - в противоположную сторону.

Согласно (3.1) и графикам (см. рис. 3.1, б) ЭДС достигает максимального значения сначала в фазе а, затем и фазе b и, наконец, в фазе с. Указанная последовательность, в которой ЭДС достигают максимального значения, называется прямой последовательностью чередования фаз. Если бы ротор генератора вращался в противоположную сторону, получилась бы обратная последовательность чередования фаз. Получить обратную последовательность чередования фаз работающего генератора можно, изменив названия любых двух фаз (например, фазу b назвать фазой с, а фазу с — фазой b).Как будет показано далее, от последовательности чередования фаз зависит, в частности, направление вращения асинхронных и синхронных двигателей. Анализ и расчет трехфазных цепей будут производиться в предположении прямой последовательности чередования фаз.

Условимся называть в дальнейшем систему из трех ЭДС. напряжений или токов симметричной, если три ЭДС, напряжения или тока имеют одинаковые действующие значения и сдвинуты по фазе относительно друг друга на угол 2π/3. В том случае, когда три ЭДС, напряжения или тока имеют различные действующие значения либо сдвинуты по фазе на углы, отличные от 2π/3, будем называть их несимметричной системой ЭДС, напряжений или токов. Трехфазные генераторы имеют симметричную систему ЭДС.

Приемники электрической энергии сравнительно редко получают питание непосредственно от трехфазных генераторов. Это объясняется тем, что экономически целесообразнее передавать на расстояние электрическую энергию более высокого напряжения, чем вырабатывают генераторы. Поэтому на электрических станциях напряжение с помощью трансформаторов повышают, а в местах потребления снижают до значения, необходимого для питания приемников. Таким образом, в большинстве случаев приемники получают питание от трех вторичных обмоток трансформаторов, которые подобно генераторам имеют практически симметричную систему ЭДС. Условимся, говоря далее о трехфазных источниках, не учитывать, чем создаются ЭДС — генераторами или трансформаторами.

От трехфазного источника получают питание как трехфазные, так и однофазные приемники электрической энергии, а также различные трехфазные и однофазные устройства для преобразования переменного тока в постоянный.

Рис. 3.3. Схема соединения фаз генератора звездой
Рис. 3.4. Схема соединения фаз генератора треугольником

Трехфазный приемник можно рассматривать в простейшем случае как устройство, состоящее из трех двухполюсников с одинаковыми параметрами, рассчитанное на подключение к трем проводам трехфазной сети, между которыми имеются три напряжения, сдвинутые относительно друг друга по фазе на угол 2π/3. Отдельные двухполюсники трехфазного приемника называются его фазами. К трехфазным приемникам относятся, например, большинство электродвигателей переменного тока, крупные электрические печи, некоторые электромагниты.

Однофазный приемник можно рассматривать как двухполюсник, рассчитанный на подключение к двум проводам сети, между которыми имеется, естественно, лишь одно напряжение. К однофазным приемникам относятся осветительные лампы, электрические нагревательные приборы, двигатели переменного тока небольшой мощности, многие электромагниты и др.

Трехфазные электрические цепи имеют ряд преимуществ по сравнению с однофазными: возможность получения вращающегося магнитного поля и использования наиболее простых, надежных и дешевых асинхронных электродвигателей; меньший расход проводниковых материалов на сооружение линий электропередачи и электрических сетей; лучшие экономические показатели трехфазных генераторов и трансформаторов; возможность подключения к трехфазному источнику или трехфазной сети приемников, рассчитанных на два различных по значению напряжения. Благодаря своим преимуществам трехфазные цепи получили исключительно широкое распространение. Электрическая энергия вырабатывается на электростанциях, распределяется с помощью линий электропередачи и электрических сетей между приемниками и потребляется последними главным образом в виде энергии трехфазного переменного тока.

 

 

21. Расчёт симметричных трёхфазных цепей. Соединение «звезда» -«звезда».

Как видно из схемы рис. 3.7, при соединении звездой фазные напряжения приемника Ua, Ub и Uc не равны линейным напряжениям Uab, Ubc и Uca. Применяя второй закон Кирхгофа и к контурам aNba, bNcb и cNac, можно получить следующие соотношения между линейными и фазными напряжениями:

(3.8a)

Uab = Ua - Ub , Ubс = Ub - Uс , Uca =Uc - Ua .

Пользуясь соотношениями (3.7) и имея векторы фазных напряжений, нетрудно построить векторы линейных напряжений (рис. 3.8).

Рис. 3.7. Схема соединения фаз приемника звездой

Если не учитывать сопротивлений линейных проводов и нейтрального провода, то следует считать комплексные значения линейных и фазных напряжений приемника равными соответственно комплексным значениям линейных и фазных напряжений источника. Вследствие указанного равенства векторная диаграмма напряжений приемника не отличается от векторной диаграммы источника при соединении звездой (см. рис. 3.5, б и 3.8). Линейные и фазные напряжения приемника, как и источника, образуют две симметричные системы напряжений. Очевидно, между линейными и фазными напряжениями приемника существует соотношение, подобное (3.6), т. е.

(3.9)

Uл = √3Uф .

Рис. 3.8. Векторная диаграмма при соединении приемника звездой в случае симметричной нагрузки

Как будет показано далее, соотношение (3.9) справедливо при определенных условиях так же в случае отсутствия нейтрального провода, т. е. в трехпроводной цепи.

На основании указанного соотношения можно сделать вывод о том, что соединение звездой следует применять в том случае, когда каждая фаза трехфазного приемника или однофазные приемники рассчитаны на напряжение в √3раз меньшее, чем номинальное линейное напряжение сети.

Из схемы рис. 3.7 видно, что при соединении звездой линейные токи равны соответствующим фазным токам:

(3.10)

Iл = Iф .

С помощью первого закона Кирхгофа получим следующее соотношение между фазными токами и током нейтрального провода:

(3.11)

Ia + Ib + Ic = IN .

Имея векторы фазных токов, с помощью (3.11) нетрудно построить вектор тока нейтрального провода.

Если нейтральный провод отсутствует, то, очевидно,

Ia + Ib + Ic =0.

 

Нагрузка считается симметричной, когда равны в отдельности активные и реактивные сопротивления всех фаз:

ra = rb = rc и ха = хb = хc,

где ха = х - х и т. д.

Условие симметричности нагрузки может быть записано также через комплексные значения полных сопротивлений фаз: Za = Zb = Zc .

Симметричная нагрузка трехфазной цепи возникает при подключении к сети трехфазных приемников (см. § 3.1).

Будем считать сначала, что при симметричной нагрузке имеется нейтральный провод.

В отношении любой фазы справедливы все формулы, полученные ранее для однофазных цепей. Например, для фазы a

(3.12)

Ia = Ua /Za ; φa = arcsin xa /za; Рa = Ua Ia cos φa = Ia2ra ;
Qa = Ua Ia sin φa = Ia2x'a : Sa = Ua Ia - I2za = Pa2 + Qa2 .
}

Так как в четырехпроводной цепи Ua = Ub = Uc = Uф = Uл /√3, то, очевидно, при симметричной нагрузке

Ia = Ib = Iс = Iф ; φa = φb = φc = φф ; Pa = Pb, Pс = Pф ;

Qa = Qb = Qс = Qф ; Sa = Sb = Sс = Sф .

Векторная диаграмма при симметричной активно-индуктивной нагрузке приведена на рис. 3.8.

Из приведенных выражений и векторной диаграммы следует, что при симметричной нагрузке образуется симметричная система токов, поэтому ток в нейтральном проводе IN = Ia + Ib + Ic = 0.

Очевидно, отключение нейтральною провода при IN = 0 не приведет к изменению фазных напряжений, токов, углов сдвига фаз, мощностей и векторной диаграммы. Даже при отсутствии нейтрального провода фазные напряжения оказываются равными Uф = Uл /√3, т. е. тому напряжению, па которое рассчитаны фазы трехфазного приемника.

Из сказанного следует, что при симметричной нагрузке в нейтральном проводе нет необходимости и при симметричной нагрузке нейтральный провод не применяется.

Мощности трехфазного приемника могут быть выражены так:

(3.13)

P = 3Рф = 3Uф Iф соs φф ; Q = 3Qф = 3Uф Iф sin φф ;
S = 3Sф = 3Uф Iф = √P2 + Q2 .
}

В качестве номинальных напряжений и токов трехфазных приемников указываются обычно линейные напряжения и токи. Учитывая это, мощности трехфазных приемников целесообразно также выражать через линейные напряжения и токи. Заменив в (3.13) фазные напряжения и ток согласно (3.8) и (3.9), получим

(3.14)

Р = √3UлIл cos φф ; Q = √3UлIл sin φф ;
S = √3Uл Iл .
}
     
         

 

22. Расчёт симметричных трёхфазных цепей. Соединение «треугольник» -«треугольник».

 

Как видно из схемы рис. 3.12, каждая фаза приемника при соединении треугольником подключена к двум линейным проводам. Поэтому независимо от значения и характера сопротивлений приемника каждое фазное напряжение равно соответствующему линейному напряжению:

(3.16)

Uф = Uл .

Если не учитывать сопротивлений проводов сети, то напряжения приемника следует считать равными линейным напряжениям источника.

На основании схемы рис. 3.12 и выражения (3.16) можно сделать вывод о том, что соединение треугольником следует применять тогда, когда каждая фаза трехфазного приемника или однофазные приемники рассчитаны на напряжение, равное номинальному линейному напряжению сети.

Фазные токи Iab , Ibc и Iса в общем случае не равны линейным токам Ia , Ib и Ic . Применяя первый закон Кирхгофа к узловым точкам а , b и с, можно получить следующие соотношения между линейными и фазными точками:

(3.17)

Ia = Iab - Ica , Ib = Ibc - Iab , Ic = Ica - Ibc .

Используя указанные соотношения и имея векторы фазных токов, нетрудно построить векторы линейных токов.

3.5.1. Симметричная нагрузка.В отношении любой фазы справедливы все формулы, полученные ранее для однофазных цепей, например

(3.18)

Iab = Uab /zab ; φab = arcsin xab /zab ; Рab = Uab Iab cos φab = Iab2rab ;
Qab = Uab Iab sin φab = Iab2xab ; Sab = Uab Iab = Iab2zab = √Pab2 + Qab2.
}
Рис. 3.12. Соединение фаз приемника треугольником
Рис. 3.13. Векторные диаграммы при соединении приемника треугольником в случае симметричной нагрузки

Очевидно, при симметричной нагрузке

Iab = Ibc = Ica = Iф ;
φab = φbc = φca = φф ;
Pab = Pbc = Pca = Pф ;
Qab = Qbc = Qca = Qф ;
Sab = Sbc = Sca = Sф .

Векторная диаграмма фазных (линейных) напряжений, а также фазных токов при симметричной активно-индуктивной нагрузке приведена на рис. 3.13, а. Там же в соответствии с выражениями (3.17) построены векторы линейных токов. Следует обратить внимание на то, что при изображении векторных диаграмм в случае соединения треугольником вектор линейного напряжения Uab принято направлять вертикально вверх.

Из приведенных выражений и векторной диаграммы следует, что при симметричной нагрузке существуют симметричные системы фазных и линейных токов.

Векторы линейных токов чаще изображают соединяющими векторы соответствующих фазных токов, как показано на рис. 3.13, б. На основании векторной диаграммы рис. 3.13, б

Ia = 2Iab sin 60° = √3Iab,
Такое же соотношение существует между любыми другими фазными и линейными токами. Поэтому можно написать, что при симметричной нагрузке вообще

(3.19)

Ia =√3Iф .

Для определения мощностей трехфазного приемника при симметричной нагрузке можно воспользоваться полученными ранее формулами (3.13) и (3.14).

Пример 3.3. К трехфазной сети с линейными напряжениями Uл = 220 В должен быть подключен трехфазный приемник, каждая фаза которого рассчитана на напряжение 220 В и содержит активное сопротивление rф = 8,65 Ом, а также индуктивное сопротивление xф = 5 Ом, соединенные последовательно.

Определить фазные и линейные токи, углы сдвига фаз между фазными напряжениями и токами, а также мощности.

Решение. Так как каждая из фаз приемника рассчитана на напряжение, равное линейному напряжению трехфазной сети, фазы приемника должны быть соединены треугольником (см. рис. 3.12).

Полные сопротивления фаз, фазные и линейные токи:

zф = √rф2 + xф2 = 10 Ом, Iф = Uф /zф = 22 А, Iл = √3Iф = 38 А.

Углы сдвига фаз между напряжениями и токами

φф = arcsin xф /zф = 30°.

Полная активная и реактивная мощности приемника и любой фазы

S = √3Uл Iл = 4730 В•А = 4,73 кВ•А;
Sф = S/31576 В•А ≈ 1,58 кВ•А;
Р = Scos φф = Srф /zф 4100 Вт = 4,1 кВт;
Рф = Р/3 ≈ 1366 Вт 1,37 кВт;
Q = Ssin φф = Sxф /zф ≈ 2365 вар ≈ 2,36 квар;
Qф = Q/3 ≈ 788 вар = 0,788 квар.

Векторные диаграммы приемника приведены на рис. 3.13.

23. Расчёт несимметричных трёхфазных цепей при соединении приёмника звездой с нулевым проводом.

 

Нагрузка считается несимметричной, когда сопротивление хотя бы одной из фаз не равно сопротивлениям других фаз. Например, нагрузка будет несимметричной, если ra = rb = rc , ха= хb ≠ хc . В общем случае при несимметричной нагрузке является полное отключение одной или двух фаз.

Рис. 3.9. К вопросу о соединении однофазных приемников звездой

Несимметричная нагрузка возникает обычно при подключении к трехфазной сети однофазных приемников (см. § 3.1). Последние могут иметь различные мощности, могут располагаться территориально в разных местах (в различных помещениях, на разных этажах и т. д.), могут включаться и отключаться независимо друг от друга.

Когда имеется несколько однофазных приемников, для бо­лее равномерной загрузки линейных проводов сети их делят на три примерно одинаковые в отношении мощности группы (рис. 3.9), называемые фазами приемников. Одни выводы приемников различных фаз подключают к трем различным линейным проводам сети, а другие выводы приемников всех фаз — к нейтральному проводу. Так как все приемники рассчитаны на одно и то же напряжение, то в пределах каждой фазы они соединяются параллельно.

Если в пределах каждой фазы приемники заменить одним приемником с эквивалентным сопротивлением и расположить их соответствующим образом, получим схему, приведенную на рис. 3.7.

Особенностью электрической цепи при несимметричной нагрузке является то, что она должна иметь обязательно нейтральный провод. Объясняется это тем, что при его отсутствии значения фазных напряжений приемников существенно зависят от степени несимметрии нагрузки, т. е. от значений и характера сопротивлений приемников различных фаз. Поскольку последние могут изменяться в широких пределах при изменении числа включенных приемников, существенно могут изменяться и фазные напряжения. На одних приемниках напряжение может оказаться значительно больше, а на других — меньше фазного напряжения сети Uл /√3, т. е. того напряжения, на которое рассчитаны приемники. А это недопустимо.

Рис. 3.10. Векторная диаграмма при соединении приемников звездой в случае несимметричной нагрузки и при наличии нейтрального провода
Рис. 3.11. Векторная диаграмма при соединении приемников звездой в случае несимметричной нагрузки и обрыве нейтрального провода

Для иллюстрации сказанного на рис. 3.10 приведена векторная диаграмма цепи рис. 3.7 с несимметричной активной нагрузкой фаз при наличии нейтрального провода, а на рис. 3.11 — диаграмма той же цепи при его обрыве. Из сравнения диаграмм отчетливо видны последствия обрыва нейтрального провода.

Необходимость нейтрального провода становится особенно очевидной, если представить себе, что при отсутствии нейтрального провода отключили все приемники, например, фаз а и b. Очевидно, напряжение фазы с при этом окажется равным нулю, так как фаза с окажется также отключенной. Если вообразить, что имеется всего лишь один однофазный приемник, рассчитанный на напряжение Uл /√3, то при отсутствии нейтрального провода его попросту было бы некуда включить.

Для повышения надежности соединения приемников с источником с помощью нейтрального провода в цепи последнего не ставят выключателей и даже защитных устройств, например предохранителей.

Фазные токи, углы сдвига фаз между фазными напряжениями и токами, а также фазные мощности при несимметричной нагрузке в цепи с нейтральным проводом будут в общем случае различными. Все они могут быть определены по приведенным ранее формулам (3.12). Для определения мощностей всех фаз следует воспользоваться выражениями

(3.15)

Р = Ра + Рb + Рc, Q = Qa + Qb + Qc .

Очевидно, формулы (3.13) и (3.14) не пригодны для определения мощностей при несимметричной нагрузке.

Если требуется определить ток IN нейтрального провода, то следует решать задачу комплексным методом. Можно также определить ток IN по векторной диаграмме, которая, естественно, должна быть построена в масштабе.

При решении задачи в комплексной форме необходимо прежде всего выразить в комплексной форме полные сопротивления фаз и фазные напряжения. После этого нетрудно найти комплексные выражения фазных токов. Например, комплексное выражение тока Ia будет равно Ia = Ua /Za .

Комплексное значение тока в нейтральном проводе определяют по формуле (3.10).

Комплексным методом можно воспользоваться и для определения фазных мощностей. Так, мощности фазы а будут равны

Sa = Ua Ia*, Pa = Re Sa, Qa = Im Sa, Sa = Pa2 + Qa2.

 

24. Расчёт несимметричных трёхфазных цепей при соединении приёмника треугольником.

 

Как и при соединении звездой, в случае соединения треугольником однофазные приемники делят на три примерно равные в отношении мощности группы. Каждая группа подключается к двум проводам, между которыми имеется напряжение, отличающееся по фазе от двух других напряжений сети (рис. 3.14). В пределах каждой группы приемники соединяются параллельно.

Рис. 3.14. К вопросу о соединении однофазных приемников треугольником
Рис. 3.15. Схема цепи к примеру 3.4

После замены приемников каждой фазы одним приемником с эквивалентным сопротивлением и соответствующего их расположения получим схему, приведенную на рис. 3.12.

Фазные токи, углы сдвига фаз между фазными напряжениями и токами, а также фазные мощности можно определить по формулам (3.18). При несимметричной нагрузке фазные токи, углы сдвига фаз и фазные мощности будут в общем случае различными. Векторная диаграмма для случая, когда в фазе ab имеется активная нагрузка, в фазе — активно-индуктивная, а в фазе са — активно-емкостная (рис. 3.15), приведена на рис. 3.16. Построение векторов линейных токов произведено в соответствии с выражениями (3.17).

Для определения мощностей всех фаз следует пользоваться формулами

(3.20)

P = Pab + Pbc + Pca , Q = Qab + Qbc + Qca,

Формулы (3.13) и (3.14), полученные ранее для симметричной нагрузки, не пригодны для определения мощностей при несимметричной нагрузке.

Если кроме фазных токов требуется определить линейные токи, задачу следует решать в комплексной форме. Для этой же цели можно воспользоваться векторной диаграммой.

При решении задачи в комплексной форме необходимо прежде всего выразить в комплексной форме фазные напряжения, а также полные сопротивления фаз. Когда это сделано, нетрудно по закону Ома определить фазные токи. Например, комплексное выражение тока Iab будет

(3.21)

Iab = Uab /Zab .

Рис. 3.16. Векторная диаграмма фазных и линейных напряжений и токов при соединении приемника треугольником в случае несимметричной нагрузки

Линейные токи определяются через фазные с помощью выражений (3.17).

Комплексным методом можно воспользоваться и для определения фазных мощностей. Так, мощности фазы аb будут равны

(3.22)

Sab = Uab I*ab = Re Sab,
Qab = Im Sab ; Sab = P2ab + Q2ab .

Рассмотрим, как будут изменяться значения различных величин в электрической цепи рис. 3.15 при изменении сопротивления приемников. Например, если при xCca /rca = const увеличить вдвое сопротивление zca , то ток Ica уменьшится, а угол φca не изменится (см. рис. 3.16). Очевидно, при этом уменьшатся и токи Iа , Ic , а также мощности Рса , Qса , Sса . Токи Iаb , Ibc , Ib , углы φab , φbc , а также мощности Рab , Qab , Sab , Рbc , Qbc , Sbc останутся постоянными. При отключения фазы са сопротивление
zca = ∞, Iса = 0, токи Iаb , Ibc , Ib , а также углы φab , φbc не изменятся, а токи Iа и Ic уменьшатся Ia = Iab , Ic = - Ibc .

 

25. Мощность в трёхфазных цепях. Измерение мощности в трёхфазных цепях.

Площади поперечного сечения приводов линий электропередачи и электрических сетей, обмоток электрических машин, трансформаторов, электротехнических аппаратов и приборов выбираются, исходя из нагревания, по значению тока в них, который при заданном напряжении переменного тока прямо пропорционален полной мощности S. А энергия, преобразуемая из электрической в другие виды (в механическую, тепловую и т. д.) и используемая в большей части для практических целей, пропорциональна активной энергии и соответствующей ей активной мощности Р.

Как известно, между указанными мощностями и реактивной мощностью существуют соотношения

P = S cos φ; S = P2 + Q2 .

Входящий в первое выражение cos φ называется коэффициентом мощности и показывает, какую часть полной мощности составляет активная мощность: cos φ = P/S= Р/P2 + Q2.

Считая, что активная мощность установки, значение кото­рой зависит в основном от мощности приемников, остается постоянной, выясним, к чему приведет увеличение коэффициента мощности установки.

Как следует из приведенных формул, при увеличении cos φ мощность S уменьшается. При Р = const это может происходить лишь за счет уменьшения реактивной мощности Q установки. Снижение мощности S приводит к уменьшению линейного тока Iл . Последнее будет сопровождаться уменьшением потерь напряжения и мощности в сопротивлениях проводов сети, обмотках трансформаторов и генераторов.

Очевидно, при уменьшении тока площади поперечного сечения названных элементов могут быть также уменьшены. В отношении трансформаторов и генераторов это приводит к уменьшению габаритных размеров, расхода дефицитных материалов на изготовление, массы, номинальной мощности и стоимости.

В действующей установке повышение cos φ при существующей площади поперечного сечения проводов позволит увеличить число приемников, которые могут быть подключены к данной сети.

Таким образом, повышение коэффициента мощности дает определенные выгоды во многих отношениях, а поэтому имеет большое народнохозяйственное значение.

Большая часть элементов электрических цепей переменного тока потребляет кроме активной мощности также индуктивную мощность. К ним относятся в первую очередь наиболее распространенные в народном хозяйстве асинхронные электродвигатели. Значительная часть индуктивной мощности потребляется трансформаторами, широко используемыми вразличных установках. Индуктивная мощность потребляется также различными электромагнитными аппаратами, такими, например, как электромагниты, контакторы и магнитные пускатели, реле и т. д.

Для уменьшения индуктивной мощности и увеличения тем самым cos φ необходимо прежде всего:

выбирать правильно двигатели по мощности, так как необоснованное завышение мощности приведет к их работе с недогрузкой, а при этом, как правило, cos φ понижается;

заменять двигатели, работающие с недогрузкой, двигателями меньшей мощности;

сокращать по возможности времена работы двигателей и трансформаторов вхолостую.

Если все же cos φ оказывается недостаточно высоким, прибегают часто к его искусственному повышению. Для этой цели подключают к трехфазной сети компенсирующие устройства, к которым относятся батареи конденсаторов и трехфазные синхронные компенсаторы (см. гл. 11). Последние применяются реже. Батарея конденсаторов соединяется обычно треугольником, как показано на рис. 3.18, а. Батарея конденсаторов потребляет емкостную мощность, которая частично компенсирует индуктивную мощность установки, в результате чего реактивная мощность уменьшается, а коэффициент мощности повышается. Естественно, что cos φ самих приемников при этом остается прежним.

Рис. 3.18. Схема и векторная диаграмма к примеру 3.5

Чтобы уменьшить ток проводов сети, батарею конденсаторов устанавливают по возможности вблизи приемников.

 


Поделиться:

Дата добавления: 2015-04-16; просмотров: 154; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты