Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Общие сведения.




Теория турбулентных течений представляет собой важнейший для практики, но и наиболее сложный раздел гидродинамики.

Как уже отмечалось, первые серьезные исследования перехода к турбулентности были выполнены О. Рейнольдсом в 1883 году. Им же со ссылкой на Стокса был предложен ответ: «Общей причиной изменения стационарного течения на завихряющееся является то обстоятельство, что при некоторых условиях стационарное движение становится неустойчивым, так что бесконечно малые возмущения могут привести его к переходу в волнистое движение». «Волнистое движение», так первоначально было названо турбулентное движение Рейнольдсом. К сожалению, исследование бесконечно малых возмущений не дало критических значений, близких к наблюдавшимся в опытах.

Основной, определяющей чертой турбулентного движения является его хаотичность. Это означает, что скорость (и другие параметры) в любой точке потока зависят от времени. Более того, эти флуктуации скорости в данной точке также являются хаотическими.

Подробный исторический обзор развития теории турбулентности можно найти в капитальном двухтомном труде известных советских специалистов А.С. Монина и А.М. Яглома «Статистическая гидромеханика» (ч.1. -М.: Наука, 1968. -639 с.)

В настоящем пособии мы ограничимся лишь самыми общими сведениями, в какой-то мере поясняющими сложные и еще не до конца понятые вопросы, связанные с турбулентным движением.

Впервые гипотеза о физическом механизме турбулентного перемешивания была высказана английским ученым Л. Ричардсоном в 1922 г. Условно турбулентное движение принято рассматривать как совокупное движение отдельных структур, называемых молями либо вихрями, совершающими как поступательное, так и вращательное движение. По Ричардсону развитая турбулентность представляет собой иерархию «вихрей». При зарождении вихри имеют большие размеры, соизмеримые с размерами канала. Затем за счет потери устойчивости они распадаются на более мелкие, передавая при этом им свою энергию. Возникает каскадный процесс, в котором энергия осредненного потока последовательно передается вихрям все более мелких масштабов. В конечном итоге образуются вихри минимального масштаба, которые далее не разрушаются. При этом нижний размер вихря (турбулентного образования) определя­ется вязкостью среды. В самых малых вихрях кинетическая энергия турбулентности за счет сил вязкого трения превращается в тепло, т.е. происходит диссипация энергии. Это указывает на необратимый характер процесса.

Из сказанного ясно, что турбулентное движение по своей физической природе является движением неустановившимся. С другой стороны, непосредственные измерения свидетельствуют, что при турбулентном характере потока в нем можно выделить основную, так называемую регулярную часть, на которую накладывается случайная часть движения.

На рис. 12.1 показан типичный вид экспериментально снятой зависимости проекции скорости в какой-то точке потока от времени при сохраняющихся неизменными граничных условиях.

Как следует из графика, особенностью этого процесса является его непериодичность, при этом

,

где - осредненная скорость, представляющая регулярную часть; - пульсационная скорость, разность между мгновенным и регулярным значением скорости.

Рис. 12.1

Аналогичные соотношения можно записать и для других компонент.

Таким образом, осредненная скорость - это какое-то устойчивое значение, вокруг которого происходит изменение рассматривае­мой проекции скорости (в данном случае ). Все сказанное в равной мере относится и к другим параметрам, в частности, к давлению.

Наиболее важной характеристикой течения при его расчете является поле скоростей. Но, как показано выше, в любой точке потока при турбулентном течении скорость выступает как случайная величина, что исключает возможность записи начальных условий для системы дифференциальных уравнений Навье-Стокса, т.е. оказывается невозможной математическая постановка задачи. Именно это и приводит к необходимости перехода к какому-то осредненному описанию, использующему не истинные, а осредненные величины скоростей и давлений. Осреднение скоростей и давлений производится путем интегрирования функций , , , по промежутку времени T (см. рис. 12.1), величина которого намного больше так называемого характерного времени турбулентных пульсаций. Это время определяется как частное от деления масштаба l на скорость турбулентных пульсаций. Под масштабом турбулентных пульсаций понимают расстояние, на котором пульсации претерпевают заметное изменение. Так, например, при турбулентном движении в трубах наибольший масштаб пульсаций равен диаметру трубы. Таким образом, осредненная компонента скорости, например,

(12.1)

Аналогичное соотношение можно записать и для давления. При этом, поскольку флуктуации (пульсации) имеют как положительный так и отрицательный знак, то

(12.2)

Ясно также, что . Если в данной точке потока , то турбулентность называют изотропной, а если это условие соблюдается во всех точках, то она называется еще и однородной.


Поделиться:

Дата добавления: 2014-11-13; просмотров: 78; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты