Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Физическая теория И. Ньютона

Читайте также:
  1. A) Естественно-правовая теория
  2. II закон Ньютона.
  3. III закон Ньютона.
  4. Quot;Трудовая" теория Ф. Энгельса
  5. VIII.1. ТЕОРИЯ
  6. А) Теория экономики предложения
  7. А. Оппозиция логичных и нелогичных действий как исходноеотношение социальной системы. Теория действия Парето и теория действия Вебера
  8. А.Бандура и теория социального обучения.
  9. АДАПТИВНАЯ ФИЗИЧЕСКАЯ КУЛЬТУРА
  10. Административная теория А. Файоля.

Ньютон (1646—1727) родился в год смерти Галилея. Его научная деятельность была тесно связана с Лондонским Королевским обществом, сообществом талантливых людей, объединенных общим интересом к познанию природы. Среди них был Р. Гук, который за 80 лет до рождения Ламарка (1744—1829) высказал идеи, схожие с биологическими идеями последнего. Р. Гук интересовался многими проблемами. С открытием нидерландским ученым X. Гюйгенсом (1629—1625) центробежного ускорения многие в Лондонском Королевском обществе заинтересовались вопросом о силе, управляющей движением небесных тел. Имеются сведения, что Р. Гук понял суть принципа квадрата расстояний при взаимодействии материальных тел, но отложил его оформление на будущее. Трактат «О движении» Ньютона, основа будущей его работы «Математические начала натуральной философии» (1687), поверг Р. Гука в шок. В кофейне, где члены Лондонского Королевского общества обсуждали трактат Ньютона «О движении», Р. Гук назвал Ньютона плагиатором, так как в своем приглашении на заседание общества, которое он направил Ньютону, он изложил собственные соображения о законе обратных квадратов.

В «Математических началах натуральной философии» Ньютон представил стройную систему понятий и принципов описания механического движения. Его заслуга состояла в том, что он первым в математической форме выразил общие идеи и мысли о механическом движении всех своих предшественников и современников.

Первый закон Ньютона. Тело движется в одном и том же направлении с неизменной быстротой, если на него не действует сила. Следовательно, если на тело не действует сила, то оно сколько угодно долго пребывает в состоянии покоя.

Первый закон Ньютона является обобщением принципа инерции Галилея. Ньютон использует понятие быстроты, т. е. ускорение, изменение скорости, по которому можно заметить действие силы на материальное тело. Далее, этот закон утверждает избирательное, важное значение инерциальных систем отсчета для изучения движения тел, следуя методологическому принципу «от простого к сложному».

Второй закон Ньютона. Ускорение, сообщаемое телу, прямо пропорционально величине силы, действующей на тело, и обрат-

но пропорционально его инертной массе: а = F/m, где а — ускорение, F— сила,



т — инертная масса. Ньютон определил массу тела как количество вещества, содержащееся в теле. Из опыта известно, что всякое тело «противится» изменению состояния своего движения и одинаковые силы, приложенные к различным телам, сообщают им разные ускорения. Следовательно, есть общее физическое свойство всех материальных тел, а именно способность материальных тел препятствовать изменению состояния их движения или покоя. Это свойство получило название инертной массы тела.

Третий закон Ньютона.Силы взаимодействия тел равны по величине и противоположны по направлению: F (AB) = -F(BA), где AB — тела, F (АВ) — сила, с которой А действует на В, и -F(BA) — сила, с которой тело В действует на тело А.

Третий закон Ньютона говорит о характере физического взаимодействия между материальными телами. В механическом взаимодействии силы возникают попарно, т. е. действию соответствует противодействие. Все эти три закона Ньютона лежат в основе классической механики.

Размышляя над проблемой свободного падения тел, установленного Галилеем, Ньютон попытался ответить на вопрос, какая сила заставляет материальные тела падать к поверхности Земли и не является ли эта сила той же физической природы, которая заставляет двигаться планеты вокруг Солнца по законам И. Кеплера (по эллипсам, а не по окружностям). Рассуждая чисто дедуктивно, он сформулировал закон всемирного тяготения: Земля имеет массу, яблоко тоже. По второму закону Ньютона сила прямо пропорциональна массе тела (F= та). В случае свободного падения яблока на Землю имеет место взаимодействие двух масс (яблока и Земли), следовательно, сила F должна быть пропорциональна произведению масс (т1т2), участвующих в физическом взаимодействии, названном свободным падением. Отсюда естественным является вопрос, будет ли меняться величина силы при увеличении расстояния между телами с массами т1 и т2.



Сравнивая ускорение свободного падения тела на Луне с ускорением свободного падения на Земле, Ньютон пришел к выводу, что в случае свободного падения Луна и Земля ведут себя как тела, масса которых сконцентрирована в их центре. Такое явление, как считал Ньютон, возможно лишь в случае, когда величина силы между взаимодействующими телами обратно пропорциональна

квадрату расстояния между ними: F= G (т1т2 /R2), где G гравитационная постоянная, вычисленная опытным путем т1 и т2 — массы тела, R — расстояние между телами. При т1 = 1 кг, т2 - 1 кг и R = 1 м величинаG = 6,67 • 10-11 Нм/кг, (где Н — сила (ньютон), которая, будучи приложенная к телу в 1 кг (массу),сообщает ему ускорение а, равное 1 м/с2). Величина гравитационной постояннойзависит от выбора системы отсчета.

Закон всемирного тяготения Ньютона говорит о наличии в природе универсальной силы физического взаимодействия между материальными телами, которая является объективной и независимой от настроений и желаний людей. Выраженная в этой математической формуле зависимость между значениями входящих в нее величин позволяет предсказывать действие этой силы взаимодействия во времени. Эту силу взаимодействия стали называть силой тяготения, гравитационным физическим взаимодействием между материальными телами.

Сила тяготения— это исторически первая сила физического взаимодействия, которая была открыта естествознанием. В формулировке закона всемирного тяготения Ньютон использовал понятие тяжелой массытела. Тяжелая масса тела зависит от массы тела, находящегося с ним в гравитационном взаимодействии. Он полагал, что отношение между инертной и тяжелой массойтел является одинаковым и не зависит от природы материала, из которого тела созданы (железо, дерево и т. д.). Это предположение вызвало оживленную дискуссию о физической природе этого отношения. А. Эйнштейн предложил решение этого вопроса в общей теории относительности.

 

2.4. Следствия механики Галилея – Ньютона.

Спустя семь лет после выхода в свет «Математических начал натуральной философии» Ньютона молодой религиозный деятель Ричард Бэнтли (1662—1742) написал письмо великому физику, в котором попросил его ответить на вопрос, не может ли сила тяготения быть причиной образования звезд. Этот вопрос затрагивает тему отношения теоретических понятий физики Галилея — Ньютона

к реальному, материальному миру.

Данному вопросу можно придать современный смысл. Сила тяготения — это сила близкодействия? С какой скоростью она распространяется? С конечной или мгновенной бесконечной? Каким образом свет распространяется в космическом пространстве? Реальное время течет от прошлого к будущему, которые имеют собственные, не сводимые друг к другу физические состояния, почему же тогда механическое движение обратимо во времени? Как объяснить свободное падение тел? Почему инертная и гравитационная массы тела представлены разными формулами (формула F= та относится к инертной массе, формула F = G (m1m2 /R2) к гравитационной)?

Ответы на эти вопросы можно разделить на две части: А — ответ самой физической теории Галилея — Ньютона и Б — трактовка проблем, лежащих в основе этих вопросов, самим Ньютоном в форме свободных рассуждений.

А) Механика ГалилеяНьютона

1. Сила тяготения является дальнодействующей силой и распространяется с бесконечной скоростью без соприкосновения между взаимодействующими телами.

2. Пространство и время заданы самим Богом и не наделены физическими свойствами.

3. Закон всемирного тяготения точно описывает специфику этого физического взаимодействия, но причины, которые вызывают это взаимодействие, неизвестны.

4. Сила тяготения не действует на свет, на его траекторию движения.

5. В мире возможны одновременные события, так как время — это абсолютная математическая длительность, мера определения движения тел в пространстве.

6. Ритм времени одинаков в каждой точке Вселенной и по всем ее направлениям.

7. Пространство — это своеобразная арена, сцена, на которой происходят физические события.

8. Математическая теория пространства Евклида правильно отражает метрику

пространства при механическом движении: два прямолинейно движущихся тела никогда не пересекутся в своем движении на просторах Вселенной.

9. Часы, установленные на движущемся теле, не замедляют и не ускоряют свой ход, величина массы тела также остается неизменной в механическом движении тел.

Б) Ответ Ньютонав форме свободного рассуждения.

1.Если бы все вещество нашего Солнца и все вещество Вселенной было бы равномерно рассеяно в небесных глубинах, и если бы каждая частица имела врожденное тяготение ко всем остальным частицам, и если бы, наконец, пространство, в котором рассеяна вся материя Вселенной, было конечным, то все вещество снаружи этого пространства в силу тяготения влеклось бы ко всему веществу, которое находится внутри этого пространства, и тем самым создало бы внутри пространства огромную сферическую массу.

В этом рассуждении Ньютон говорит о гравитационной неустойчивости Вселенной, т. е. при отсутствии силы отталкивания, противоположной силе тяготения, тяготение приведет к скручиванию массы всех тел во Вселенной в одном центре. Этот эффект называется коллапсом (падение внутрь), заимствовано

из латинского языка.

2.Если пространство бесконечно и вещество Вселенной равномерно распределено в этом пространстве, то вещество Вселенной сгущалось бы в точках пространства, создавая бесконечное число массивных тел. Именно в бесконечном пространстве из вещества (частиц) могло образоваться наше Солнце и другие небесные тела под действием силы тяготения. В своих рассуждениях Ньютон отмечает важность свойств самого пространства (замкнутое, открытое)для физических процессов образования материальных тел во Вселенной. Как и Галилей, он считал, что в материальном мире все состоит из вечных, нестареющих частиц, некоторые из них имеют светящуюся природу. Из них состоят звезды.

Ньютону принадлежит интересная гипотеза о том, что «жар Солнца» и звезд сохраняется большим их весом и высокой плотностью окружающих их атмосфер, оболочек, сжимающих их со всех сторон. В последние годы своей жизни Ньютон уделял большое внимание изучению оптических явлений.

Физическая природа света.Физическая природа света была предметом исследования многих мыслителей времени Ньютона. Р. Гук рассматривал свет как волновое явление, движение волн. Это означало, что пространство между небесными телами заполнено эфиром, особым физическим материальным агрегатным состоянием. По мере изучения свойств распространения света эфир наделялся рядом фантастических физических свойств: невесомый, разряженный, всепроникающий и т. п.

Гипотеза Ньютона о корпускулярной природе света как потока частиц,

подверженных колебательному движению, не была популярна в его время. Невозможно было в XVII в. и осуществить метод Галилея для измерения скорости света, который он предложил в работе «Беседы о математическом доказательстве» (1638). Астроном X. Кассини (1625—1712) утверждал, что скорость света конечна, однако приводимым им доказательствам не поверили. «Трактат о свете» (1690 г. — дата публикации) X. Гюйгенса (1629—1693) считался наиболее авторитетным трудом в то время. В нем приводились доказательства волновой физической природы света.

В конце XIX в. и в первом десятилетии ХХ в. проблема физической природы света приобрела вновь актуальное значение в работах Г. Герца (1857—1894) и А. Эйнштейна, который обратился к корпускулярной гипотезе света И. Ньютона.

 


Дата добавления: 2014-11-13; просмотров: 39; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Механика Галилея | Успехи механики Ньютона.
lektsii.com - Лекции.Ком - 2014-2017 год. (0.016 сек.) Главная страница Случайная страница Контакты