Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Функция распределения

Читайте также:
  1. D) Осы кесіндіде функция шенелген болуы керек
  2. Return x; нет этой инструкции, ведь функция так ничего не вернет!
  3. А) - функциялары аралығында сызықты тәуелсіз және олардың әрқайсысы көрсетілген біртекті теңдеудің шешімдері
  4. А) Ряд, многоугольник и функция распределения случайной дискретной величины
  5. А) Ряд, многоугольник и функция распределения случайной дискретной величины
  6. А) Ряд, многоугольник и функция распределения случайной дискретной величины
  7. Автокорреляционная функция
  8. Анализ распределения и использования прибыли предприятия
  9. Аржы нарығы, экономиканы дамытудағы оның маңызы. Қаржы нарығының функциялары
  10. Аржылардың функциялары

Во всех рассмотренных выше случаях случайная величина определялась путем задания значений самой величины и вероятностей этих значений.

Однако такой метод применим далеко не всегда. Например, в случае непрерывной случайной величины, ее значения могут заполнять некоторый произвольный интервал. Очевидно, что в этом случае задать все значения случайной величины просто нереально.

Даже в случае, когда это сделать можно, зачастую задача решается чрезвычайно сложно. Рассмотренный только что пример даже при относительно простом условии (приборов только четыре) приводит к достаточно неудобным вычислениям, а если в задаче будет несколько сотен приборов?

Поэтому встает задача по возможности отказаться от индивидуального подхода к каждой задаче и найти по возможности наиболее общий способ задания любых типов случайных величин.

 

Пусть х – действительное число. Вероятность события, состоящего в том, что Х примет значение, меньшее х, т.е. Х < x, обозначим через F(x).

 

Определение. Функцией распределения называют функцию F(x), определяющую вероятность того, что случайная величина Х в результате испытания примет значение, меньшее х.

Функцию распределения также называют интегральной функцией.

Функция распределения существует как для непрерывных, так и для дискретных случайных величин. Она полностью характеризует случайную величину и является одной из форм закона распределения.

Для дискретной случайной величины функция распределения имеет вид:

Знак неравенства под знаком суммы показывает, что суммирование распространяется на те возможные значения случайной величины, которые меньше аргумента х.

Функция распределения дискретной случайной величины Х разрывна и возрастает скачками при переходе через каждое значение хi.

 

 
 

Так для примера, рассмотренного выше, функция распределения будет иметь вид:

 


Дата добавления: 2014-12-03; просмотров: 21; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Среднее квадратическое отклонение | Свойства функции распределения
lektsii.com - Лекции.Ком - 2014-2018 год. (0.009 сек.) Главная страница Случайная страница Контакты