Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Фізико-хімічні методи ідентифікації препаратів.

Читайте также:
  1. Amp; Методичні вказівки
  2. Amp; Методичні вказівки
  3. Amp; Методичні вказівки
  4. Amp; Методичні вказівки
  5. Amp; Методичні вказівки
  6. Amp; Методичні вказівки
  7. Amp; Методичні вказівки
  8. B. Искусственная вентиляция легких. Методики проведения искусственной вентиляции легких
  9. I. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЙ РАЗДЕЛ
  10. II. Примеры проективных методик

В хіміко-токсикологічному аналізі лікарських отрут переважно використовуються спектральні методи (спектроскопія в УФ - і ІЧ-областях) і хроматографічні методи (ТСХ, ГРХ, ВЕРХ, електрофорез).

Спектральні методи аналізу:

Спектри поглинання у видимій і ультрафіолетовій області, зв'язані з електронними переходами, одержали назву електронних спектрів.

Область електронних переходів охоплює інтервал спектру електромагнітних хвиль від 100 до 800 нм (106 - 104 см). Ця область підрозділяється на : видиму - з інтервалом довжин хвиль від 400 до 800 нм, і ультрафіолетову - з діапазоном від 100 до 400 нм. Остання також поділяється на: ближню - від 200 до 400 нм, і дальню (вакуумну) - від 100 до 200 нм.

Електрони, що входять до складу атомів і молекул, розрізняються по своєму енергетичному стану (1s-, 2s-, 2р-електрони й ін). Для їхнього збудження потрібно випромінювання з різною довжиною хвилі (енергією). Найбільша енергія необхідна для збудження електронів простого С-С-зв'язку (σ-електрони). Трохи менша енергія потрібня для збудження електронів інших простих зв'язків, наприклад атома вуглецю з атомом, що містить неподілену пару електронів (π-електрони). Молекули органічних речовин, які не містять парних зв'язків, не мають характерного поглинання в робочій зоні в УФ-області (200-400 нм). Групи атомів, що містять одну або кілька кратних зв'язків, називають хромофорами, вони викликають вибіркове поглинання електромагнітного випромінювання в УФ-області. Якщо ж є зв'язок (сполучення) хромофорів один з одним або з π-електронними системами - ауксохромами (ОН, NH3, СН4 і ін), то максимум поглинання речовини зміщується в довгохвильову область (батохромне зрушення).

 

Максимуми поглинання деяких хромофорів:

Хромофор λmax, нм
С = С
С = С = С
С = С
С = N 240-250
- NO2
C = O
- N = N -
= C =
- N = C
Бензол 180, 203, 254
Нафталін 275, 314

 

Вплив замісників на положення смуг поглинання монозаміщених похідних бензолу (в етанолі):

 

R Смуга поглинання
друга третя
Н
СН3
Сl
OH
SH
NH2
CH = CH2
NO2 -
OСН3
COOH

 



 

Залежно від поводження молекул в УФ-області спектра (робоча зона - 200-400 нм) всі речовини поділяються на три групи:

• не мають характерного поглинання (відсутність хромофорів).

 

пахікарпін коніїн

• які мають вибіркове поглинання, що не залежить від рН-середовища;

атропін (макс. поглинання в етанолі при 252, 258, 265 нм, в розчині 0,1 н

промедол (макс поглинання в етанолі при 252, 258, 264 нм. в розчині 0,1 н

• які мають вибіркове поглинання, що залежить від рН-середовища.

Морфін 284 нм (Е1сν 1%= 194) 296 нм (Е1сν 1% = 274)

 

 

Молекули сполук останньої групи містять хромофори, сполучені з ауксохромами і можуть мати всі види електронних переходів. В результаті іонізації молекули при зміні рН розчинів смуги поглинання зміщуються в довгохвильову частину спектра (батохромне зрушення) або короткохвильову область (гіпсохромне зрушення). Деякі речовини (барбітурати), що не мають характерного поглинання в кислому середовищі в області робочої зони (200 - 400 нм), при підлужувані починають поглинати в зв'язку з появою хромоформного угруповання.



Речовини, що відносяться до групи сполук, що мають вибіркове поглинання в Уф-області, яке залежить від рН-середовища, представляють найбільш цікаве коло об'єктів дослідження в хіміко-токсикологічному аналізі.

Метод УФ-спектрометрії чутливий, цікавий для проведення кількісного визначення, досить точний, але вимагає ретельного очищення аналізованих речовин від супутніх домішок, що не завжди вдається при хіміко-токсикологічному дослідженні об'єктів біологічного походження.

Метод ІЧ-спектроскопії менш чутливий, ніж УФ-спектрометрії, спектри більш складні для розшифрування, тому при хіміко-токсикологічних дослідженнях використовуються недостатньо широко.

При проведенні хіміко-токсикологічних досліджень спектральний аналіз звичайно проводиться після хроматографічного скринінгу і є спрямованим. Він включає очищення виділеної сполуки і зняття спектрів, найчастіше в УФ-області при різних значеннях рН розчину й у різних розчинниках (при необхідності).

Очищення проводиться головним чином за допомогою хроматографії в тонкому шарі сорбенту, у випадках речовин кислотно-основного характеру - екстракційним методом або сполученням двох видів очищення.

 

Хроматографічні методи:

Умови газохроматографічного аналізу «лікарських отрут»:

Газовий хроматограф ЛХМ-80 з термоаерозольним детектором (ТАД) чи Perkin - Elmer F-22 з безполум’яним азотно-фосфорним детектором (NPD). Колонка скляна, силанізована, довжиною 1 м, внутрішній діаметр 2-3 мм. Сорбент - 3 %-ний SE-30 на хромосорбі W (НР)-80 - 100 меш. Швидкість газу-носія - 45 мл/хв азоту для ТАД і 40 мл/хв гелію для NPD. Ефективність хроматографічних колонок по додекану при 100°С для ТАД і NPD відповідно 1200 т.т і 1350 т.т. Селективність детектування оптимзована по кофеїну і гексадекану. При цьому встановлені наступні витрати допоміжних газів: для ТАД - 18 мл/хв водню, 200 мл/хв повітря, 135 мл/хв азоту через генератор аерозолю з хлоридом рубідію при температурі генератора 5100С; для NPD з кулькою силікату рубідію - 1 мл/хв водню і 60 мл/хв повітря. Температура детектора 300°С. Температура випаровувача 250°С. Температура термостату колонки змінюється по лінійній програмі від 130 до 290°С зі швидкістю 20°С в хвилину. Витримування при кінцевій температурі займає до 15 хвилин загального часу аналізу. Об’єм проби, що вводиться - 2,5 мкл.

 

Умови поділу «лікарських отрут» методом високоефективної рідинної хроматографії на прикладі 1,4-бензодиазепінів:

· хроматографічна колонка (62x2 мм), заповнена зворотньо-фазним сорбентом «Сепарон» С18 (5 мкм) (колонка подається з хроматографом).

· як рухливу фазу (елюент) для поділу нативних бензодиазепінів (крім медазепаму) використовують суміш 0,05 М водного розчину двухзаміщеного фосфату амонію й ацетонітрилу (65:35) - рН=7,8;

· детектування нативних 1,4-бензодиазепінів проводиться при довжині хвилі 230 нм;

· у якості елюенту для поділу продуктів гідролітичного розщеплення нативних бензодиазепінів - бензофенонів (і медазепаму) використовується система тих же розчинників, але в співвідношенні 45:55;

· детектування бензофенонів проводиться при довжині хвилі 220 нм;

· швидкість потоку елююровання - 100 мкл/хв.

Ідентифікація «лікарських» отрут методами ГРХ і ВЕРХ проводиться за параметрами утримання піків.

 


Дата добавления: 2014-12-03; просмотров: 33; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Хімічні методи дослідження «лікарських» отрут. | Кількісне визначення «лікарських» отрут
lektsii.com - Лекции.Ком - 2014-2018 год. (0.012 сек.) Главная страница Случайная страница Контакты