Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Додатні раціональні числа як нескінченні періодичні десяткові дроби. Чисті та мішані періодичні дроби та їх перетворення у звичайні.

Читайте также:
  1. Sp2-Гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов и числа его неподеленных электронных пар равна 3 (примеры).
  2. Абсолютна величина числа позначається символом .
  3. Абсолютные числа разводов и общие коэффициенты разводимости в США и СССР,
  4. Алгоритми арифметичних операцій над цілими невід’ємними числами у десятковій системі числення.
  5. Арифметичні операції над двійковими числами. Машинні одиниці інформації
  6. Б- положение той же самой точки Р характеризуется двумя другими числами, если я стою на прежнем месте, но повернулся в сторону.
  7. Важность числа аргументов
  8. Використання рівняння Шредінгера до атома водню. Хвильова функція. Квантові числа
  9. Воднеподібні атоми в квантовій механіці. Квантові числа
  10. Возрастание числа нервных потрясений, психических заболеваний, дезорганизация поведения и дезинтеграция личности.

9. У попередньому пункті ми довели теорему, яка визначила умови, при яких звичайний дріб перетворюється у десятковий. Цілком закономірно виникає запитання «а як бути у випадках, коли знаменник у канонічному розкладі містить прості множники, відмінні від 2 і 5?». Розглянемо звичайний дріб такий, що n=2m•5k•р, де р – простий множник, відмінний від 2 і 5. На практиці при спробі перетворити такі звичайні дроби у десяткові шляхом ділення чисельника на знаменник доводиться зустрічатися з двома випадками: 1) на певному кроці ділення одна цифра чи група цифр починає повторюватися одразу після коми; 2) на певному кроці ділення одна цифра чи група цифр починає повторюватися не одразу після коми. Наприклад, =0,232323…; =0,2131313…. В таких випадках говорять, що дістаємо нескінченний періодичний десятковий дріб.

Означення: нескінченний десятковий дріб, у якого одна цифра або група цифр весь час повторюється називається нескінченним періодичним дробом.

Означення: одна цифра або група цифр, яка повторюється, називається періодом.

Нескінченні періодичні дроби прийнято позначати так: 0,2131313…=0,2(13), 0,373373373…=0,(373). Число, утворене цифрами, що стоять після коми до періоду, називають доперіодичною частиною. У наведених прикладах: (13) і (373) – це періоди, а число 2 у першому дробові – доперіодична частина. В математиці доведено, що число цифр у періоді нескінченного періодичного дробу не перевищує n-1, де n знаменник звичайного дробу . Серед нескінченних періодичних дробів виділяють чисті та мішані періодичні дроби.

Означення: чистим періодичним дробом називається нескінченний десятковий дріб, у якого період починається одразу після коми.

Означення: мішаним періодичним дробом називається нескінченний десятковий дріб, у якого період починається не одразу після коми.

Таким чином, ми з’ясували, що при перетворенні звичайних дробів у десяткові, ми можемо зустрітися з двома випадками: 1) ділення чисельника на знаменник призводить до скінченного десяткового дробу; 2) ділення чисельника на знаменник призводить до нескінченного десяткового дробу, в якому одна цифра чи група цифр весь час повторюється. Отже, можна стверджувати, що нескінченні періодичні дроби існують. У зв’язку з цим виникає питання про перетворення чистих і мішаних періодичних дробів у звичайні. У математиці доведені теореми, на яких ґрунтуються наступні правила перетворення періодичних дробів у звичайні.



Правило 1: чистий періодичний десятковий дріб дорівнює звичайному дробові, чисельником якого є число, що стоїть у періоді, а знаменником – число, яке записане стількома дев’ятками, скільки цифр у періоді.

Правило 2: мішаний періодичний десятковий дріб дорівнює звичайному дробові, чисельник якого є різниця між числом, що стоїть після коми до кінця періоду, та числом, що стоїть після коми до періоду, а знаменником є число, яке записане стількома дев’ятками, скільки цифр у періоді, та стількома нулями, скільки є цифр до періоду.

Вправа: перетворити періодичні дроби у звичайні: 0,(243); 0, 134(27).


Дата добавления: 2014-12-03; просмотров: 120; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Доведення. Оскільки у формулюванні теореми є словосполучення необхідно і достатньо, то доведення складатиметься з двох частин | Розв’язання. Перший періодичний дріб є чистим, а тому використаємо перше правило: 0,(243)=
lektsii.com - Лекции.Ком - 2014-2018 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты