Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Теорема о движении центра масс.

Читайте также:
  1. II закон термодинамики. Теорема Карно-Клаузиуса
  2. II. (Теорема Больцано-Вейерштрасса).
  3. VІ. ВИДАВНИЧА СПРАВА СХІДНОЇ І ЦЕНТРАЛЬНОЇ ЄВРОПИ: БІЛОРУСЬ
  4. АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ КОНЦЕНТРАЦИЕЙ РАСТВОРОВ МИНЕРАЛЬНЫХ УДОБРЕНИЙ
  5. Б) теория фирмы и транзакционных издержек. Теорема Р.Г.Коуза (1910)
  6. Биологическое значение боли. Современное представление о ноцицепции и центральные механизмы боли. Антиноцицептивная система. Нейрохимические механизмы антиноцицепции.
  7. Будьте любезны, объясните такие понятия, как созерцание, концентрация и медитация.
  8. Бытие как центральная категория онтологии. Формы бытия и их взаимосвязь.
  9. В инерциальных системах отсчета при движении со скоростями, много меньшими скорости света
  10. В те годы расширяется круг новой русской интеллигенции, которая начала формироваться еще при Петре I; центральной фигурой этого круга был М. В. Ломоносов.

В ряде случаев для определения характера движения системы (особенно твердого тела), достаточно знать закон движения ее центра масс. Чтобы найти этот закон, обратимся к уравнениям движения системы и сложим по­членно их левые и правые части. Тогда получим:

Преобразуем левую часть равенства. Из формулы для радиус-вектора центра масс имеем:

.

Беря от обеих частей этого равенства вторую производную по времени и замечая, что производная от суммы равна сумме произ­водных, найдем:

или 28

где -ускорение центра масс системы. Так как по свойству вну­тренних сил системы , то, подставляя все найденные значения, получим окончательно:

Уравнение и выражает теорему о движении центра масс системы: произведение массы системы на ускорение ее центра масс равно геометрической сумме всех действующих на систему внешних сил. Сравнивая с уравнением дви­жения материальной точки, получаем другое вы­ражение теоремы: центр масс системы движется как мате­риальная точка, масса которой равна массе всей системы и к которой приложены все внешние силы, действующие на систему.

Проектируя обе части равенства на координатные оси, получим:

Эти уравнения представляют собою дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.

Значение доказанной теоремы состоит в следующем.

1) Теорема дает обоснование методам динамики точки. Из урав­нений видно, что решения, которые мы получаем, рассмат­ривая данное тело как материальную точку, определяют закон движения центра масс этого тела, т. е. имеют вполне конкрет­ный смысл.

В частности, если тело движется поступательно, то его движе­ние полностью определяется движением центра масс. Таким образом, поступательно движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе тела. В остальных слу­чаях тело можно рассматривать как материальную точку лишь тогда, когда практически для определения положения тела достаточно знать положение его центра масс.

2) Теорема позволяет при определении закона движения центра масс любой системы исключать из рассмотрения все наперед неиз­вестные внутренние силы. В этом состоит ее практическая ценность.


Дата добавления: 2014-12-23; просмотров: 33; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Дифференциальные уравнения движения системы. | Закон сохранения движения центра масс.
lektsii.com - Лекции.Ком - 2014-2018 год. (0.007 сек.) Главная страница Случайная страница Контакты