Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Этапы построения статистических прогнозов

Читайте также:
  1. II. Основные цели и задачи Программы, срок и этапы ее реализации, целевые индикаторы и показатели
  2. II. Основные этапы развития физики Становление физики (до 17 в.).
  3. III. Произвести анализ риска путем построения дерева событий.
  4. Аксиоматический способ построения теории
  5. Алгоритм Квайна построения сокращенной ДНФ.
  6. Алгоритм построения сокращенной ДНФ с помощью КНФ
  7. Анализ статистических материалов
  8. Антропосоциогенез, его сущность, основные этапы и тенденции развития.
  9. Апологетика и патристика как этапы становления средневековой мысли.
  10. Апологетика, патристика и схоластика как этапы развития средневековой философии.

 

Основными этапами разработки статистических прогнозов являются:

1. Анализ объекта прогнозирования. На этом этапе рассматривается состояние, основные элементы, взаимосвязи и факторы, формирующие и оказывающие влияние на исследуемых объект; выдвигается основная рабочая гипотеза; выявляются причинно-следственные связи как внутри явления, так и вне его и определяется их статистическое выражение.

2. Характеристика информационной базы исследования.

На данном этапе выдвигаются основные требования, предъявляемые к информационной базе. При этом различают количественную информацию, обработку которой осуществляют статистическими методами, и качественную информацию, сбор и обработка которой производится преимущественно эвристическими и непараметрическими статистическими методами анализа.

3. Выбор метода прогнозирования.

Процесс выбора метода прогнозирования обусловлен объективизацией прогноза, которая обеспечивает реализацию наиболее точного и достоверного прогноза. С этой целью целесообразно использовать различную исходную информацию и несколько методов прогнозирования.

4. Построение исходной модели прогноза и ее реализация. Данный этап предполагает, что основой построения прогноза является разработка достаточно адекватной исходной модели, обладающей прогностическими свойствами.

5. Проверка достоверности, точности и обоснованности прогноза.

На данном этапе дается достоверная оценка процесса прогнозирования на основе расчета и анализа абсолютных, относительных и средних показателей точности прогноза. Надежность прогноза определяется, как правило, величиной доверительных интервалов.

6. Принятие решений на основе прогнозной модели и выработка рекомендаций о возможностях ее использования для получения прогнозных оценок.

Построение достаточно точных и надежных прогнозов позволяет на практике наиболее четко сформулировать резервы и пути развития изучаемых социально-экономических явлений и процессов.

Одним из наиболее распространенных методов прогнозирования социально-экономических явлений и процессов является экстраполяция, то есть продление тенденции и закономерностей, связей и соотношений прошлого и настоящего на будущее.

Типичным и наиболее применимым примером экстраполяции является прогнозы по одномерному временному ряду, который заключается в продлении на будущий период сложившейся тенденции изучаемого явления. Основная цель данного прогноза заключается в том, чтобы показать, к каким результатам можно прийти в будущем, если развитие явления будет происходить со скоростью, ускорением и так далее, аналогичным прошлого периода. Если прогнозная оценка окажется неудовлетворительной, то сложившаяся в прошлом тенденция должна быть изменена с учётом тех факторов, под влиянием которых она складывается.



Широкое практическое применение методов экстраполяции трендов объясняется простотой метода, сравнительно небольшим объемом информации и четкостью механизма реализации, лежащих в его основе предпосылок.

Теоретической основой распространения тенденции на будущее является свойство социально-экономических явлений, называемое инерционностью.

Инерционность – это сохранение тенденций, закономерностей, скорости и характера развития явлений и процессов в будущем, измеренных по данным прошлого периода.

Статистическое прогнозирование предполагает не только качественное предсказание, но и достаточно точное количественное измерение вероятных возможностей, ожидаемых значений признака. Для данной цели важно, чтобы прогностическая модель имела достаточную точность или допустимо малую ошибку прогноза.

Ошибка статистического прогноза будет тем меньше, чем меньше срок упреждения и чем длиннее информационная база прогноза. Оба этих фактора ошибки прогноза имеют следующие условия: состояние и параметры процесса в ближайшем будущем более сходны с фактическими данными и поэтому их предвидеть можно точнее, чем параметры того же процесса в далеком будущем.

Если тенденция динамики сохранялась неизменной 30 лет, есть гораздо большая вероятность ее сохранения и в последующие пять лет, чем если существующая тенденция возникла всего десять лет назад.



Однако из этих условий нельзя однозначно вывести какой-либо универсальный алгоритм определения допустимого срока упреждения при заданной точности прогноза либо наоборот. Приходится на данном этапе ограничиться чисто эмпирическим правилом: в большинстве случаев срок упреждения не должен превышать третей части длины базы прогноза. Иначе говоря, для прогноза на 5 уровней желательно иметь временной ряд для прогноза по длине не менее чем 15 уровней.

В каждом конкретном исследовании соотношение длины базы прогноза и срока упреждения необходимо обосновать, кроме учета вышеперечисленных общих правил, используя еще и всю возможную информацию об особенностях изучаемого объекта.

Прогнозы на основе экстраполяции временных рядов, как и любые статистические прогнозы, могут быть либо точечными либо интервальными.

Экстраполяцию в общем виде можно представить формулой вида:

(8.1)

где yi - текущий уровень исходного временного ряда;

L - период упреждения;

ai - параметр уравнения тренда

В зависимости от того, какие принципы и исходные данные положены в основу прогноза, можно выделить следующие группы методов прогнозирования социально-экономических явлений:

1. прогнозирование на основе простейших методов;

2. прогнозирование на основе экстраполяции трендов;

3. прогнозирование на основе дисконтирования информации;

4. прогнозирование на основе кривых роста.

Данные группы методов прогнозирования наиболее подробно будут рассмотрены в следующих параграфах.

 


Дата добавления: 2014-12-23; просмотров: 107; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Сущность и классификация статистических прогнозов | Понятие о рядах динамики и их виды
lektsii.com - Лекции.Ком - 2014-2017 год. (0.008 сек.) Главная страница Случайная страница Контакты