Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Формула Бейеса.

Читайте также:
  1. IV.1.3. Формула Клина
  2. Барометрическая формула. Распределение Больцмана
  3. Барометрическая формула. Распределение Больцмана. Распределение Максвелла - Больцмана.
  4. Барометрическая формула: .
  5. Гіпотеза й формула де Брoйля. Дослідне обґрунтування корпускулярно-хвильового дуалізму речовини
  6. Глобальная формула Тейлора с остаточным членом различного вида.
  7. Давление под изогнутой поверхностью жидкости. Формула Лапласа.
  8. Дифракція рентгенівських променів на просторовій решітці. Формула Вульфа - Брегга
  9. Дифракція рентгенівських променів на просторовій решітці. Формула Вульфа-Брегга
  10. Занятие 5. Формула полной вероятности.

Получим важные формулы Бейеса или, как иногда говорят, формулы вероятности гипотез. Требуется найти вероятность события Ai, если известно, что В произошло. Согласно теореме умножения имеем:

(1.9.1)

Из соотношения (1.9.1) получаем

(1.9.2)

используя формулу полной вероятности (1.8.1), находим:

(1.9.3)

Полученные формулы (1.9.3) носят название формул Бейеса. Общая схема применения этих формул к решению практических задач такова. Пусть событие В может протекать в различных условиях, относительно характера которых может быть сделано n гипотез: . По тем или иным причинам нам известны вероятности этих гипотез до испытания(априорные вероятности гипотез). Известно также, что гипотеза сообщает событию В вероятность . Произведен опыт, в ко­тором событие В наступило. Это должно вызвать переоценку вероятностей гипотез ; формулы Бейеса количественно решают этот вопрос.

Вероятности называются апостериорными вероятностями события . В артиллерийской практике производится так называемая пристрелка, имеющая своей целью уточнить наши знания относительно условий стрельбы (например, правильность прицела). В теории пристрелки широко используется формула Бейеса. Мы ограничимся приведением чисто схематического примера исключительно ради иллю­страции характера задач, решаемых этой формулой.

Пример 1. Имеется пять урн следующего состава:

2 урны (состава ) по 2 белых и 3 черных шара,

2 урны (состава ) по 1 белому и 4 черных шара,

1 урна (состава ) по 4 белых и 1 черный шар.

Из одной наудачу выбранной урны взят шар. Он оказался белым (событие В). Чему равна после опыта вероятность (апостериорная вероятность) того, что шар вынут из урны третьего состава? Согласно предположению

 

Согласно формуле Бейеса имеем:

 

Точно так же находим:

 

 


Дата добавления: 2014-12-23; просмотров: 38; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Формула полной вероятности. | Независимые испытания. Формулы Бернулли.
lektsii.com - Лекции.Ком - 2014-2018 год. (0.007 сек.) Главная страница Случайная страница Контакты