Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Формула полной вероятности

Читайте также:
  1. IV.1.3. Формула Клина
  2. Анализ полной стоимости в логистике
  3. Б) Функция распределения и плотность вероятности непрерывной случайной величины
  4. Барометрическая формула. Распределение Больцмана
  5. Барометрическая формула. Распределение Больцмана. Распределение Максвелла - Больцмана.
  6. Барометрическая формула: .
  7. Вероятности вылива нефти при авариях однокорпусных и двухкорпусных танкеров
  8. Вместе с тем анализ состояния информационной безопасности Российской Федерации показывает, что ее уровень не в полной мере соответствует потребностям общества и государства.
  9. Вопрос 2. Методы анализа вероятности наступления банкротства
  10. Выделение уравнений продольного движения из полной системы уравнений продольного движения самолета.

Пусть требуется определить вероятность события А, которое может произойти в сочетании с одним из событий Н1, Н2,…, Н n, образующих полную группу несовместных событий ( Ø, ). Эти события будем называть гипотезами.

       
   
 

Н1 Н2 Н3

АН1 АН2 АН3

АНn-2 АНn-1 АНn

Hn-2 Hn-1 Hn

В соответствии со свойством 3) вероятности и теоремой умножения вероятностей

(2.13)

Пример. Из n экзаменационных билетов студент знает m («хорошие билеты»). Что лучше: брать на экзамене билет первым или вторым?

Решение. Введем событие А – студент взял «хороший» билет.

Студент берет билет первым. В этом случае

1) Студент берет билет вторым. Введем две гипотезы:

Н1первый студент взял «хороший» билет, Н2 = .

Вывод: безразлично, брать билет первым или вторым.

 

Формула Байеса (теорема гипотез)

В соответствии с теоремой умножения вероятностей

Р(АНi) = Р(Hi)·Р(А/Hi) = Р(A)·Р(Hi/А).

В это равенство подставим значение Р(А), вычисленное по формуле полной вероятности (2.13) и найдем Р(Hi/А).

Р(Нi/A) = (2.14)

Это следствие из теоремы умножения и формулы полной вероятности называется формулой Байеса или теоремой гипотез.

В формуле полной вероятности определяется вероятность события до его появления, т.е. до того, как произведен опыт, в котором оно могло появиться. Вероятности гипотез Р(Нi), входящие в формулу полной вероятности, называют априорными, т.е. «до опытными».

Пусть опыт произведен и его результат известен, т.е. мы знаем, произошло или не произошло событие А. Получившийся результат мог произойти при осуществлении какой-то одной гипотезы Нi. Дополнительная информация об исходе опыта перераспределяет вероятности гипотез. Эти перераспределенные вероятности гипотез Р(Нi/A) называют апостериорными , т.е. «после опытными».

Пример В одной из корзин 1 камешек и 4 кусочка хлеба, во второй – 4 камешка и 1 кусочек хлеба. Мышка наугад выбирает корзину, бежит к ней и вытаскивает кусочек хлеба - событие А (предполагается, что он затем вновь возвращается в корзину). Какова вероятность события А? Каковы вероятности того, что второй раз мышка побежит к первой корзине, ко второй корзине? Какова вероятность того, что она второй раз вытащит кусочек хлеба?



Рассмотрим гипотезы

Н1 – мышка бежит к первой корзине,

Н2 – мышка бежит ко второй корзине.

Р(Н1) =1/2 = Р(Н2) (априорные вероятности)

.

Р(Н1/A)

Р(Н2/A) (апостериорные вероятности).

При втором подходе

Мышка обучилась, второй раз она выберет первую корзину с большей вероятностью и добьется большего успеха.

Заметим, что это – один из основных принципов обучения кибернетических систем.

 

 


Дата добавления: 2014-12-30; просмотров: 29; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Формула вероятности суммы совместных событий | Случайные величины
lektsii.com - Лекции.Ком - 2014-2018 год. (0.011 сек.) Главная страница Случайная страница Контакты