Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Тела действуют друг на друга с силами, равными по модулю и противоположными по направлению.




Силы, возникающие при взаимодействии тел, всегда имеют одинаковую природу. Они приложены к разным телам и поэтому не могут уравновешивать друг друга. Складывать по правилам векторного сложения можно только силы, приложенные к одному телу.

Рис. 1.9.1 иллюстрирует третий закон Ньютона. Человек действует на груз с такой же по модулю силой, с какой груз действует на человека. Эти силы направлены в противоположные стороны. Они имеют одну и ту же физическую природу – это упругие силы каната. Сообщаемые обоим телам ускорения обратно пропорциональны массам тел.

Рисунок 1.9.1. Третий закон Ньютона.

Силы, действующие между частями одного и того же тела, называются внутренними. Если тело движется как целое, то его ускорение определяется только внешней силой. Внутренние силы исключаются из второго закона Ньютона, так как их векторная сумма равна нулю. В качестве примера рассмотрим рис. 1.9.2, на котором изображены два тела с массами m1 и m2, жестко связанные между собой невесомой нерастяжимой нитью и двигающиеся с одинаковым ускорением как единое целое под действием внешней силы Между телами действуют внутренние силы, подчиняющиеся третьему закону Ньютона: Движение каждого тела зависит от сил взаимодействия между ними. Второй закон Ньютона, примененный к каждому телу в отдельности, дает:

Складывая левые и правые части этих уравнений и принимая во внимание, что и получим:

Внутренние силы исключились из уравнения движения системы двух связанных тел.

Рисунок 1.9.2. Исключение внутренних сил

Модель. Движение связанных брусков

7.2

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре.

Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока I:

Φ = LI.

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется генри (Гн). Индуктивность контура или катушки равна 1 Гн, если при силе постоянного тока 1 А собственный поток равен 1 Вб:

1 Гн = 1 Вб / 1 А.

В качестве примера рассчитаем индуктивность длинного соленоида, имеющего N витков, площадь сечения S и длину l. Магнитное поле соленоида определяется формулой (см. § 1.17)

B = μ0 I n,

где I – ток в соленоиде, n = N / e – число витков на единицу длины соленоида.

Магнитный поток, пронизывающий все N витков соленоида, равен

Φ = B S N = μ0 n2 S l I.

Следовательно, индуктивность соленоида равна

L = μ0 n2 S l = μ0 n2 V,

где V = Sl – объем соленоида, в котором сосредоточено магнитное поле. Полученный результат не учитывает краевых эффектов, поэтому он приближенно справедлив только для достаточно длинных катушек. Если соленоид заполнен веществом с магнитной проницаемостью μ, то при заданном токе I индукция магнитного поля возрастает по модулю в μ раз (см. § 1.17); поэтому индуктивность катушки с сердечником также увеличивается в μ раз:

Lμ = μ L = μ0 μ n2 V.

ЭДС самоиндукции, возникающая в катушке с постоянным значением индуктивности, согласно закона Фарадея равна

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы (рис. 1.21.1). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Рисунок 1.21.1. Магнитная энергия катушки. При размыкании ключа K лампа ярко вспыхивает

Из закона сохранения энергии следует, что вся энергия, запасенная в катушке, выделится в виде джоулева тепла. Если обозначить через R полное сопротивление цепи, то за время Δt выделится количество теплоты ΔQ = I2 R Δt.

Ток в цепи равен

Выражение для ΔQ можно записать в виде

ΔQ = –L I ΔI = –Φ (I) ΔI.

В этом выражении ΔI < 0; ток в цепи постепенно убывает от первоначального значения I0 до нуля. Полное количество теплоты, выделившейся в цепи, можно получить, выполнив операцию интегрирования в пределах от I0 до 0. Это дает

Эту формулу можно получить графическим методом, изобразив на графике зависимость магнитного потока Φ (I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, равное первоначальному запасу энергии магнитного поля, определяется площадью изображенного на рис. 1.21.2 треугольника.

Рисунок 1.21.2. Вычисление энергии магнитного поля

Таким образом, энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна

Применим полученное выражение для энергии катушки к длинному соленоиду с магнитным сердечником. Используя приведенные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, можно получить:

где V – объем соленоида. Это выражение показывает, что магнитная энергия локализована не в витках катушки, по которым протекает ток, а рассредоточена по всему объему, в котором создано магнитное поле. Физическая величина

равная энергии магнитного поля в единице объема, называется объемной плотностью магнитной энергии. Дж. Максвелл показал, что выражение для объемной плотности магнитной энергии, выведенное здесь для случая длинного соленоида, справедливо для любых магнитных полей.

 

9.1

Инерциальные и неинерциальные системы отсчета. Легко понять, что любая система отсчета, которая движется равномерно и прямолинейно относительно данной инерциальной системы отсчета, также является инерциальной. В самом деле, если тело относительно определенной инерциальной системы отсчета движется с постоянной скоростью , то по отношению к системе отсчета, которая сама движется со скоростью , это тело согласно закону сложения скоростей будет двигаться с некоторой новой, но также постоянной скоростью .
Ускорение тела в обеих системах отсчета равно нулю.
Напротив, любая система отсчета, движущаяся с ускорением относительно инерциальной системы отсчета, уже будет неинерциальной. Действительно, если , а скорость изменяется, то скорость также будет меняться с течением времени: .
Следовательно, характер движения тела будет изменяться при переходе от одной системы отсчета к другой.
Так как систему отсчета, связанную с Землей, можно приближенно рассматривать как инерциальную, то и системы отсчета, связанные с поездом, движущимся с постоянной скоростью, или с кораблем, плывущим по прямой с неизменной скоростью, также будут инерциальными. Но как только поезд начнет увеличивать свою скорость, связанная с ним система отсчета перестанет быть инерциальной. Закон инерции и второй закон Ньютона перестанут выполняться, если рассматривать движение по отношению к таким системам.

Принцип относительности. На основании подобных наблюдений можно сформулировать один из самых фундаментальных законов природы - принцип относительности:
Все механические процессы протекают одинаково во всех инерциальных системах отсчета.
Это утверждение известно как принцип относительности в механике. Его еще называют принципом относительности Галилея.
Не нужно думать, что выполнение принципа относительности означает полную тождественность движения одного и того же тела относительно различных инерциальных систем отсчета. Тождественны лишь законы динамики. Законы движения тел определяются не только законами динамики, но и начальными скоростями и начальными координатами тел. А начальные скорости и начальные координаты данного тела относительно разных систем отсчета различны.
Так, камень будет падать отвесно, если его начальная скорость равна нулю по отношению к Земле. В равномерно движущемся поезде камень также будет падать отвесно по отношению к стенам вагона, если начальная скорость камня по отношению к поезду равна нулю. Но, с точки зрения наблюдателя на Земле, камень, падающий отвесно в поезде, будет двигаться по параболе (рис.3.15, 3.16). Дело в том, что начальная скорость камня по отношению к системе отсчета, связанной с Землей, отлична от нуля и равна скорости поезда.

Открытие принципа относительности - одно из величайших достижений человеческого разума. Оно оказалось возможным лишь после того, как люди поняли, что ни Земля, ни Солнце не являются центром Вселенной.

9.2

В технике и в окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения.

Механическими колебаниями называются периодические (или почти периодические) изменения физической величины, описывающей механическое движение (скорость, перемещение, кинетическая и потенциальныая энергия и т. п.).

Если в какой-либо точке среды, в которой близко расположенные атомы или молекулы испытывают силовое воздействие, возбужден процесс механических колебаний, то этот процесс будет с конечной скоростью, зависящей от свойств среды, распространяться от точки к точке. Так возникают механические волны. Примерами такого процесса являются звуковые волны в воздухе.

Как и колебания, волновые процессы различной физической природы (звук, электромагнитные волны, волны на поверхности жидкости и т. д.) имеют много общего. Распространение волн различной физической природы можно описывать с помощью одинаковых математических уравнений. В этом проявляется единство материального мира.


Поделиться:

Дата добавления: 2015-01-01; просмотров: 398; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты