Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Методы обнаружения ИИ




К основным из них относятся:

ионизационный, в котором используется эффект ионизации газовой Среды, вызываемой воздействием на нее ИИ, и как следствие – изменение ее электропроводности;

сцинтилляционный, заключающийся в том, что в некоторых веществах под воздействием ИИ образуются вспышки света, регистрируемые непосредственным наблюдением или с помощью фотоумножителей;

химический, в котором ИИ обнаруживаются с помощью химических реакций, изменения кислотности и проводимости, происходящих при облучении жидкостных химических систем;

фотографический, заключающийся в том, что при воздействии ИИ на фотопленку на ней в фотослое происходит выделение зерен серебра вдоль траектории частиц (квантов). Место, где произошло выделение металлического серебра воспринимается как черная точка, а совокупность таких точек как черное пятно;

метод, основанный на проводимости кристаллов, т.е. когда под воздействием ИИ возникает ток в кристаллах, изготовленных из диэлектрических материалов и изменяется проводимость кристаллов из полупроводников;

тепловой или калориметрический метод, основанный на использовании непосредственного или косвенного теплового эффекта, возникающего при взаимодействии ИИ с веществом.

На основании перечисленных методов обнаружения ИИ изготавливаются различные детекторы этих излучений, которые являются одной из трех составных частей дозиметрических приборов (рис.1).

Детектор ИИ представляет собой устройство, предназначенное для преобразования энергии этих излучений в другой вид энергии, удобный для последующей регистрации измерителем.

К наиболее распространенным детекторам относятся: ионизационные камеры; газоразрядные счетчики; полупроводниковые детекторы; сцинтилляционные детекторы; радиотермолюминисцентные детекторы; химические детекторы и др.

 

       
 
 
   

 


 

Измеритель

 

Рис.1. Обобщенная структурная схема дозиметрического прибора.

 

 

Ионизационная камера (ИК) представляет собой устройство, состоящее из двух изолированных друг от друга электродов, к которым подведено напряжение. Когда в воздушном пространстве между электродами происходит ионизация, то под воздействием электрического поля ионы приобретают направленное движение и в цепи протекает электрический ток, называемый ионизационным.

Величина его зависит от интенсивности ИИ. Принципиальная схема работы ионизационной камеры представлена на рис.2.

Выполняются ионизационные камеры в виде емкости различной формы (куба, параллелепипеда, цилиндра) и заполняются обычным воздухом при нормальном давлении.


-

 

 

 

n, g, b + + +

 


- - -

 

+ -

+

 

Рис.2. Принципиальная схема работы ионизационной камеры.

 

Газоразрядный счетчик (ГС) представляет собой металлический или стеклянный (в этом случае на внутреннюю стенку наносится токопроводящий материал) цилиндр, внутри которого коаксиально расположена тонкая стальная нить. Корпус является отрицательным, а нить положительным электродами, к которым приложено довольно высокое напряжение. Пространство между электродами заполнено инертными газами (неон, аргон, гелий или их смеси) под пониженным давлением. Принципиальное отличие ГС от ИК состоит в том, что в ГС используется усиление ионизационного тока за счет явления ударной ионизации.

Ударная ионизация возникает при значительно больших по сравнению с ИК значениях напряжений. В этих условиях электроны, образованные непосредственным воздействием ИИ, приобретают такую энергию, которая достаточна для ионизации атомов газа. Электроны вторичной ионизации вместе с электронами первичной ионизации в последующих столкновениях ионизируют другие атомы. Таким образом происходит лавинообразное размножение зарядов. При достижении электронами положительного электрода (нити) происходит их нейтрализация, что уменьшает потенциал, поданный на нить, и для его восполнения в цепи появится импульс напряжения. Частота импульсов будет пропорциональна интенсивности ИИ. Принципиальная схема конструкции ГС приведена на рис.3. Газоразрядные счетчики бывают стальные, стеклянные, тонкостенные, толстостенные, торцовые и др.

 

4 2 1 4

 
 


3 3

 

 

Рис.3. Принципиальная схема конструкции ГС: 1 – корпус (катод), 2 – нить (анод), 3 – выводы, 4 – изоляторы.

Полупроводниковые детекторы все чаще находят применение в современной дозиметрической аппаратуре, работающей на основе ионизационного метода регистрации ИИ. Принцип их действия подобен принципу действия ионизационной камеры, однако в основу работы полупроводникового детектора лежит ионизация атомов не газа, а твердого вещества – полупроводника. В качестве основных материалов для изготовления полупроводниковых детекторов используются германий и кремний. Конструкция полупроводникового детектора приведена на рис.4.

 

 

g

 

- +
+ -

       
   
 
 


2 3

1

 

Рис.4. Конструкция полупроводникового детектора: 1 – монокристалл полупроводника, 2,3 – напыленные металлические электроды.

Большим достоинством полупроводниковых детекторов являются небольшие размеры и вес.

Сцинтилляционный детектор представляет собой сочетание сцинтиллятора, в котором энергия ИИ преобразуется в световую энергию, и оптически соединенного с ним фотоэлектронного умножителя (ФЭУ), преобразующего световую энергию в электрический импульс (рис.5).

 

3 4 5

1 2

6

g

 

 

R Н

 

Рис.5. Сцинтилляционный детектор: 1 – сцинтиллятор, 2 – световод, 3 – фотокатод ФЭУ, 4 – фокусирующий электрод, 5 – диоды, 6 – анод.

 

Принцип работы такого детектора состоит в следующем. В сцинтилляторе 1 при прохождении ионизирующей частицы возникает квант света. Свет через световод 2 воздействует на фотокатод 3 ФЭУ. Квант света на фотокатоде 3 выбивает электрон, который через фокусирующий электрод 4 попадает на первый диод. В результате вторичной электронной эмиссии на диодах электроны выбивают из них вторичные электроны, образуя нарастающую от диода к диоду электронную лавину. Заканчивается эта лавина при достижении анода 6. В результате в цепи анода потечет ток и на нагрузочном сопротивлении появится импульс напряжения, который может быть зарегистрирован.

Радиотермолюминисцентные детекторы. Под радиотермолюминисценцией понимают такой процесс, при котором накопленная в кристалле энергия ИИ преобразуется в энергию флюоресценции под действием теплового возбуждения. Для краткости, обычно, вместо термина «радиотермолюминисценция» употребляют термин «термолюминисценция». К наиболее широко применяемым термолюминисцентным материалам относятся фтористый кальций CaF 2 и фтористый литий LiF. Используют термолюминофоры и на основе алюмофосфарных стекол. Основным материалом стекла являются MgO, P 2O 5, Al 2O 3. В качестве активатора этого стекла используют MnO 2 или серебро.

Недостатком алюмофосфарного стекла является его светочувствительность. В связи с этим необходима тщательная упаковка таких детекторов в светонепроницаемую оболочку.

Химические детекторы предполагают использование жидкостных химических систем. Их можно приготовить из тканеэквивалентных реактивов. Продукты радиационно-химических реакций в них сравнительно стабильны и могут быть измерены непосредственно по изменению цвета.


Поделиться:

Дата добавления: 2015-01-05; просмотров: 433; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты