Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Центробежная и кориолисова силы инерции. Примеры проявления их действия.

Читайте также:
  1. II. Примеры проективных методик
  2. III. Примеры решения задач.
  3. III. Примеры решения задач.
  4. III. Примеры решения задач.
  5. IV. Примеры решения задач.
  6. IV. Примеры решения задач.
  7. IV. Примеры решения задач.
  8. IV. Примеры решения задач.
  9. IV. Примеры решения задач.
  10. IV. Примеры решения задач.

Аабс=Аотн+2[w*Vотн]+dv0/dt+[w[wr]]+[dw/dt*r],2[w*Vотн]=Акор, [dw/dt*r]=Ацб, Fкор=-mАкор=2m[Vотн*w], Fцб=-[dw/dt*r]. Центробежные силы инерции существуют лишь в ускоренно движущихся (вращающихся) системах отсчета и исчезают при переходе к инерциальным системам. (Рассуждения на тему см. в Сивухине стр.374). бь

Примеры: пассажир в движ. транспорте на поворотах и т.п.

Кориолисова сила инерции возникает, когда матер. точка движется относительно вращающейся системы отсчета. От других сил инерции кориол. сила отличается тем, что она зависит от относительной скорости Vотн.

Пример: маятник Фуко, пассажир на повороте идет по автобусу и т.п.

Кориол. сила всегда перпендикулярна к относительной скорости, поэтому при относительном движении она не совершает работы. Следов., она является гироскопической силой (см. Сивухин, стр.145).

Пункт 2.

Сложение гармонических колебаний одинаковой частоты.x1=A1cos(wt+j1), x2=A2cos(wt+j2). Представим в комплексной форме: x=x1+x2=A1ei(wt+j1)+A2ei(wt+j2)=eiwt(A1eij1+A2eij2), A1eij1+A2eij2=Aeij, A2=A12+A22+2A1A2cos(j1–j2,), tg j=(A1sinj1+A2sinj2)/(A1cosj1+A2cosj2) Þ x=x1+x2=Aei(wt+j) Þ x=Acos(w t–j).

Сложения гармонических колебаний с близкими частотами.x1=A1cos(w1t+j1), x2=A2cos(w2t+j2). Каждое из колебаний представим в комплексной форме, а сложение будем производить векторно. Пусть A1>A2. Cуммой двух колебаний с близкими частотами является колебание с изменяющейся амплитудой (от А1–А2 до А12) и с частотой |w1–w2|. Колебания амплитуды с частотой W=|w1–w2| называются с биениями, а частота W – частотой биения.

Билет № 15.

Пункт 1. см. билет № 14. пункт 1.+ Опыт Гука. Закон Бэра. В северном полушарии правый берег выше левого(в общем). Износ рельсов.

Пункт 2.Затухающие колебания.Воспользуемся наиболее простым случаем «жидкого» или «вязкого» трения, когда сила трения направлениа противоположно скорости и пропорциональна скорости. Колебания при наличии трения становятся затухающими: . - коэффициент трения,

Решение этого уравнения удобно искать в виде

. Учитывая, что ,

, находим

Решение этого уравнения: , где

,(*)

При не очень больших - вещественная величина и - гармоническая функция. Вещественная часть колебания, описываемого равенством (*), представляется формулой:



Отсюда видно, что амплитуда колебаний уменьшается в е=2,7 раза в течение времени -время затухания, а - показатель (коэффициент, декремент) затухания. Всё выше написанное относится к случаю не очень больших коэффициентов трения и когда W – действительное число.


Дата добавления: 2015-01-05; просмотров: 19; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Билет № 7. | Логарифмический декремент
lektsii.com - Лекции.Ком - 2014-2018 год. (0.009 сек.) Главная страница Случайная страница Контакты