Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Иннервация надпочечников




Надпочечники имеют большое количество нервных волокон. Иннервация надпочечников происходит из брюшного и грудного нервного сплетения. Нервные окончания в большей степени иннервируют мозговой слой надпочечников, а так же частично кортикальный слой.

 

53. Значение нервной системы.Нервная система, основными функциями которой являются быстрая, точная передача информации и ее интеграция, обеспечивает взаимосвязь между органами и системами органов, функционирование организма как единого целого, его взаимодействие с внешней средой. Она регулирует и координирует деятельность различных органов, приспосабливает деятельность всего организма как целостной системы к изменяющимся условиям внешней и внутренней среды. С помощью нервной системы осуществляется прием и анализ разнообразных сигналов из окружающей среды и внутренних органов, формируются ответные реакции на эти сигналы. С деятельностью высших отделов нервной системы связано осуществление психических функций— осознание сигналов окружающего мира, их запоминание, принятие решения и организация целенаправленного поведения, абстрактное мышление и речь. Все эти сложные функции осуществляются огромным количеством нервных клеток — нейронов, объединенных в сложнейшие нейронные цепи и центры.
Общий план строения нервной системы.Нервная система в функциональном и структурном отношении делится на периферическую и центральную нервную системы. Центральная нервная система — совокупность связанных между собой нейронов. Она представлена головным и спинным мозгом. На разрезе головного и спинного мозга различают участки более темного цвета— серое вещество (образовано телами нервных клеток) и участки белого цвета — белое вещество мозга (скопление нервных волокон, покрытых миелиновой оболочкой).
Периферическая часть нервной системы образована нервами — пучками нервных волокон, покрытых сверху общей соединительнотканной оболочкой. К периферической нервной системе относят и нервные узлы, или ганглии,— скопления нервных клеток вне спинного и головного мозга.
Если в составе нерва собраны нервные волокна, передающие возбуждение из центральной нервной системы к иннервируемому органу (эффектору), то такие нервы называютцентробежными или эфферентными. Есть нервы, которые образованы чувствительными нервными волокнами, по которым возбуждение распространяется в центральную нервную систему. Такие нервы называют центростремительными или афферентными. Большинство нервов являются смешанными, в их состав входят как центростремительные, так и центробежные нервные волокна.
Разделение нервной системы на центральную и периферическую во многом условно, так как функционирует нервная система как единое целое.
Нейрон — структурная единица нервной системы.Нейрон — структурная и функциональная единица нервной системы, приспособленная для осуществления приема, обработки, хранения, передачи и интеграции информации. Эта сложноустроенная высокодифференцированная клетка состоит из тела, или сомы, и отростков разного типа — дендритов и аксонов (рис. 3).
Рефлекс (от лат. reflexus — отражённый) — стереотипная реакция живого организма на раздражитель, проходящая с участием нервной системы. Рефлексы существуют у многоклеточных живых организмов, обладающих нервной системой, осуществляются посредством рефлекторной дуги.[1] Рефлекс — основная форма деятельности нервной системы.
Рефлекторная дуга (нервная дуга) — путь, проходимый нервными импульсами при осуществлении рефлекса.

 

54. Спинной мозг расположен в позвоночном канале. Имеет вид белого тяжа длинной 40-45 см, в зависимости от роста, диаметром 1-1,5 см.
На поперечном сечение спинной мозг различают серое и белое вещество. Серое вещество имеет форму бабочки, в нем выделяют передние и задние рога. В передних рогах лежат двигающие нейроны, в задних – вставочные нейроны.
От спинного мозга отходит 31 пара спинно – мозговых нервов, каждый нерв начинается двумя корешками. От передних отходят аксоны двигательных нейронов, а от задних рогов отходят задние корешки, это аксоны чувствительных нейронов. Соединяясь вместе корешки образуют смешанный спинно - мозговой нерв. На задних корешках лежат нервные узлы с телами чувствительных нейронов. Вокруг серого вещества расположено белое вещество. В белом веществе находятся передние, задние и боковые канатики. Они образованы проводящими путями, восходящими и нисходящими. Благодаря им осуществляется связь между спинным и головным мозгом.

Функции спинного мозга:
1) Проводниковая (Белое вещество спинного мозга обеспечивает связь и согласованную работу всех отделов центральной нервной системы, осуществляя проводниковую функцию. Нервные импульсы, поступающие в спинной мозг от рецепторов, передаются по восходящим проводящим путям в головной мозг. Из головного мозга импульсы по нисходящим проводящим путям поступают к нижележащим отделам спинного мозга и оттуда — к органам) .
2) Рефлекторная функция спинного мозга обеспечивает движение. (
. Через спинной мозг проходят рефлекторные дуги, с которыми связано сокращение скелетных мышц тела (кроме мышц головы) . Пример простейшего двигательного рефлекса — коленный рефлекс. Он проявляется в быстром подъеме ноги при резком ударе по сухожилию ниже коленной чашечки.)

Спинномозговые нервы.
У человека имеется 31 пара спинномозговых нервов, а именно: 8 пар шейных, 12 пар грудных, 5 пар поясничных, 5 пар крестцовых и 1 пара копчиковых.
Каждый спинномозговой нерв отходит от спинного мозга двумя корешками: задним (чувствительным) и передним (двигательным); оба корешка соединяются в один ствол, выходящий из позвоночного канала через межпозвоночное отверстие. Вблизи и несколько кнаружи от места соединения задний корешок образует узел, в котором передний двигательный корешок не принимает участия. Вблизи и несколько кнаружи от места соединения задний корешок образует узел, ganglion spinale, в котором передний двигательный корешок не принимает участия. Благодаря соединению обоих корешков спинномозговые нервы являются смешанными нервами: они содержат чувствительные (афферентные) волокна от клеток спинномозговых узлов, двигательные (эфферентные) волокна от клеток переднего рога, а также вегетативные волокна от клеток боковых рогов, выходящие из спинного мозга в составе переднего корешка. Вегетативные волокна имеются и в заднем корешке.
Каждый спинномозговой нерв при выходе из межпозвоночного отверстия делится соответственно двум частям миотома (дорсальной и вентральной) на две ветви:

-заднюю для развивающейся из дорсальной части миотома аутохтонной мускулатуры спины и покрывающей ее кожи;
-переднюю для вентральной стенки туловища и конечностей, развивающихся из вентральных частей миотомов.

 

55. Головной мозг - часть центральной нервной системы; главный регулятор всех жизненных функций организма. В результате поражения головного мозга возникают тяжелые заболевания. В головном мозге содержится 25 миллиардов нейронов, составляющих серое вещество мозга. Головной мозг покрывают три оболочки - твердая, мягкая и находящаяся между ними паутинная, по каналам которой циркулирует спинномозговая жидкость (ликвор). Ликвор - своеобразный гидравлический амортизатор ударов. Мозг взрослого мужчины весит в среднем 1375 г; масса мозга женщины - 1245 г. Однако это не означает, что мозг мужчин лучше развит. Иногда вес мозга может достигать 1800 г. Головной мозг состоит из 5 основных отделов: конечного мозга, промежуточного, среднего, заднего и продолговатого мозга. Конечный мозг составляет 80% всей массы головного мозга. Он протянулся от лобной кости до затылочной. Конечный мозг состоит из двух полушарий, в которых много борозд и извилин. Он делится на несколько долей (лобную, теменную, височную и затылочную). Различают подкорку и кору больших полушарий. Подкорка состоит из подкорковых ядер, регулирующих различные функции организма. Головной мозг располагается в трех черепных ямках. Большие полушария занимают переднюю и среднюю ямки, а заднюю ямку - мозжечок, под которым расположен продолговатый мозг.

Функции головного мозга

Функции различных отделов головного мозга различны. черепномозговые нервы — двенадцать пар нервов, отходящих от ствола мозга. Их обозначают римскими цифрами по порядку их расположения, каждый из них имеет собственное название.
Список нервов
I пара — обонятельный нерв
II пара — зрительный нерв
III пара — глазодвигательный нерв
IV пара — блоковый нерв
V пара — тройничный нерв
VI пара — отводящий нерв
VII пара — лицевой нерв
VIII пара — преддверно-улитковый нерв
IX пара — языкоглоточный нерв
Х пара — блуждающий нерв
XI пара — добавочный нерв
XII пара — подъязычный нерв

 

56. Продолговатый мозг

Продолговатый мозг – центр многих рефлексов, которые можно разделить на две группы: вегетативные и тонические.
К первой группе рефлексов относятся центры дыхательных, сосудодвигательных, пищеварительных рефлексов, а также потоотделения, чихания, кашля и др. Среди таких рефлексов имеются очень сложные, цепные рефлексы. Их особенность заключается в том, что они состоят из двух и более рефлексов, когда конец одного является началом другого. К таким рефлексам относятся рвотный и сосательный. Последний стимулирует возникновение ещё одного рефлекса – глотательного. Акт глотания состоит из двух рефлексов: 1) формирование пищевого комка – произвольный акт; 2) проглатывание – непроизвольный акт.
Можно заключить, что рефлексы продолговатого мозга отличаются сложностью и разнообразием по сравнению с рефлексами спинного мозга.
Вторую группу составляют рефлексы, центрами которых служат ядра Бехтерева, Дейтерса и Швальбе. Эти ядра – центры тонических рефлексов. Они представляют собой надстройку над спинным мозгом, выполняют функцию перераспределения мышечного тонуса между сгибательными и разгибательными мышцами. Такие рефлексы называются опорными. Они обеспечивают стояние человека и животных, вызывая преобладание тонуса разгибательных мышц, противодействие силе земного притяжения. Рефлексы позы и положения зависят от отклонения головы. Возникающие при этом импульсы направляются в продолговатый мозг той стороны, в которую отклонилась голова, и вызывают повышение разгибательного тонуса мышц конечностей этой же стороны, создавая опору для головы и всего туловища, осуществляя рефлекс восстановления положения головы.
Возрастные особенности продолговатого мозга. К моменту рождения продолговатый мозг вполне развит для выполнения своих функций. Его масса вместе с мостом составляет 8 г (2% массы головного мозга). Клетки мелкие, имеют длинные мало миелинизированные отростки. К моменту рождения клетки функционально развиты, благодаря чему осуществляется регуляция дыхания, сердечно-сосудистой и пищеварительной систем. К 1,5 годам увеличивается количество клеток в ядре блуждающего нерва. К этому времени клетки продолговатого мозга хорошо дифференцированы. К 7-ми годам структура продолговатого мозга и моста достигает уровня взрослого человека.
Об уровне функционального созревания продолговатого мозга можно судить по совершенству многих вегетативных рефлексов, таких как дыхательные, пищеварительные (сосательный, глотательный), а также рефлексов чихания, кашля и др.
Познотонические рефлексы продолговатого мозга развиваются ещё до рождения. Некоторые из них отчётливо выражены у новорожденных.

Мост — это место, где располагаются нервные волокна, по которым нервные импульсы идут вверх в кору большого мозга или обратно, вниз — в спинной мозг, к мозжечку, к продолговатому мозгу. Здесь же находятся центры, связанные с мимикой, жевательными функциями.

Мозжечок
У млекопитающих и человека мозжечок построен из двух частей: более древнее образование – червь (один) и более молодые образования – полушария (два). Кора мозжечка благодаря складчатости обладает большой поверхностью. Если расправить его складки, то площадь составит 340 см2. Кора мозжечка построена из трёх слоёв, которые содержат разные виды клеток: звёздчатые, корзинчатые, зернистые и т. д.
Между клетками всех слоёв имеются многочисленные связи. Они взаимодействуют между собой, возбуждаясь или тормозясь. Мозжечок имеет сложное строение, многочисленные связи почти со всеми отделами ЦНС. Все это дает возможность предполагать, что он выполняет разнообразные функции.
Начало изучения функций мозжечка относится к первому десятилетию ХIХ в. В 1809 г. впервые было обнаружено, что при удалении мозжечка возникает нарушение произвольных движений, падение мышечного тонуса. Животное не может подняться, ходить, есть и т. д. Односторонняя экстирпация мозжечка сопровождалась манежными движениями (движения в одну, здоровую сторону).
Позже было установлено, что по прошествии некоторого времени после удаления мозжечка у животных в значительной степени восстанавливается координация движений и мышечный тонус. Но навсегда остаются такие последствия, как атаксия (нарушение равновесия, появление пьяной походки), астазия (качательные, дрожательные движения, неустойчивость, неточность движений), атония или дистония (снижение или нарушение мышечного тонуса), астения (лёгкая утомляемость), адиадохокинез (нарушение правильного чередования быстрых антагонистических движений, таких как сгибание-разгибание), дезэквилибрация (нарушение равновесия).
При удалении мозжечка также наблюдается нарушение тонуса гладких мышц кишечника, эвакуации, всасывания, возникают резкие колебания содержания натрия, калия, сахара в крови и другие вегетативные сдвиги. Описанные экспериментальные исследования позволяют заключить, что мозжечок регулирует позу, мышечный тонус, позволяет точно выполнять медленные и быстрые целенаправленные движения, осуществляет регуляцию многих вегетативных функций. Мозжечок – это высший подкорковый центр адаптационно-трофического влияния симпатической нервной системы (Л. А. Орбели). В общем виде эти явления могут быть обозначены как стабилизирующие. Эта роль мозжечка тем более выражена, чем точнее координированы выполняемые движения человека. Тяжёлые расстройства, которые наблюдаются при его заболеваниях, могут свидетельствовать о нарушении тонкой функциональной слаженности различных отделов мозжечка, коры головного мозга и нижележащих отделов головного мозга.
Возрастные особенности мозжечка. В эмбриональный период развития раньше созревает червь, а затем полушария. У новорожденного червь более развит, чем полушария. Ещё во внутриутробном периоде образуются борозды и извилины полушарий мозжечка. Масса мозжечка к моменту рождения равна 20,5–25 г, к 3-м месяцам масса удваивается, а к 6-ти – утраивается. Наиболее интенсивно мозжечок растёт в первый год жизни, особенно с 5-ти до 11-ти месяцев. Как раз в это время ребёнок учится сидеть и ходить. Мозжечок интенсивно развивается в период полового созревания. Завершение развития ножек мозжечка наступает к 7-ми годам жизни и обеспечивает установление связей с другими отделами ЦНС. Формирование функций мозжечка зависит от его связей с продолговатым, средним и промежуточным мозгом.

Средний мозг и его функции

Возникновение среднего мозга связано с развитием зрения. У млекопитающих этот отдел головного мозга вполне сформирован и состоит из четверохолмий, красных ядер и чёрной субстанции.
Средний мозг – надстройка над продолговатым, особенно это касается регуляции мышечного тонуса. Ядра блокового и глазодвигательного нервов – центры регуляции тонуса глазных мышц и напряжения при аккомодации (настройка глаза на ближнее и дальнее видение), движении глаз и др.
Четверохолмие состоит из верхних и нижних холмиков. Верхние выполняют функцию центра зрительных, а нижние – слуховых ориентировочных рефлексов. Ориентировочный рефлекс – это совместные реакции глаз, головы, ушей и всего тела в ответ на неожиданное действие новых зрительных или слуховых раздражителей. Подробнее этот рефлекс будет описан в следующей главе.
Второй важный отдел среднего мозга, располагающийся в заднем отделе мозговой ножки, – красные ядра. Это центры регуляции мышечного тонуса – принятия, сохранения активной позы и восстановления её при нарушении.
Средний мозг является центром статических и статокинетических рефлексов. Первые из них представляют собой рефлексы сохранения и восстановления положения тела в пространстве в условиях отсутствия перемещения, а вторые – при перемещении тела в пространстве.
К статическим рефлексам относятся установочные и выпрямительные. Установочные обеспечивают сохранение или восстановление правильного положения головы и возникают при раздражении рецепторов вестибулярного аппарата, мышц шеи, асимметричного раздражения кожной поверхности и глаз. Главные из них – рефлексы с отолитового аппарата внутреннего уха на мышцы шеи. Все остальные рефлексы также обеспечивают восстановление или сохранение положения головы. Сочетание раздражения рецепторов зрения, проприорецепторов шеи, кожной поверхности обеспечивает правильное положение головы и координацию движений.
Выпрямительные рефлексы представляют собой серию цепных рефлексов, началом которых являются установочные рефлексы с лабиринтов на шею, восстанавливающие правильное положение головы, а затем с рецепторов шеи на туловище, обеспечивая его правильное положение в пространстве. Этот комплекс рефлексов обеспечивает восстановление тела из положения лёжа в положение стоя или наоборот.
Статокинетические рефлексы возникают при раздражении рецепторов полукружных каналов вестибулярного аппарата. Адекватными раздражителями для них служат прямолинейное или вращательное ускорение, тряска, качка и др. Раздражение вызывается несовпадением движения жидкости внутреннего уха – эндолимфы – и скорости движения головы. Примеры статокинетических рефлексов – рефлекс «готовности к прыжку», «лифтная реакция» и комплекс рефлексов свободного падения тела. В последнем случае этот комплекс рефлексов возникает при падении с высоты на землю. Свободное падение тела начинается с установочного рефлекса, который обеспечивает правильное положение головы относительно земной поверхности. В этом случае шея оказывается скрученной. Возникает рефлекс с рецепторов шеи на туловище. Устанавливается правильное положение тела животного или человека относительно земной поверхности. В результате ещё в процессе полёта животное принимает правильное положение тела. Последняя серия рефлексов обеспечивает увеличение тонуса разгибателей передних конечностей и повышение тонуса сгибателей задних. Такая пружинящая реакция предохраняет голову и туловище от удара о землю.
Помимо этих рефлексов, высшие животные и человек обладают более сложными тоническими рефлексами, позволяющими изменять положение тела в пространстве. Чем совершеннее головной мозг животного, тем большую независимость проявляет тело по отношению к установочным рефлексам. Однако при поражении у человека среднего мозга (опухоль по средней линии в области четверохолмия) наблюдается ригидность (повышение тонуса) разгибательных мышц. При этом конечности вытянуты и прижаты к туловищу, голова запрокинута назад.
Возрастные особенности среднего мозга. У новорожденного масса среднего мозга составляет 2,5 г. Форма и строение почти такие же, как у взрослых. Ядра глазодвигательного нерва хорошо развиты. Его волокна миелинизированы. Хорошо развито красное ядро, практически сформированы его связи с другими отделами ЦНС. Чёрная субстанция развивается медленнее.
Функциональное развитие среднего мозга начинается ещё во внутриутробном периоде. На раннем этапе эмбриогенеза обнаруживаются тонические и лабиринтные рефлексы, оборонительные и другие двигательные реакции.
В первые дни жизни ребёнка проявляется рефлекс на громкий внезапный раздражитель (у ребёнка разгибаются руки в стороны под углом к туловищу). Этот рефлекс исчезает к 4–7-месячному возрасту, но появляется реакция, близкая к ориентировочному рефлексу, она называется «рефлекс испуга, или вздрагивания». В это же время появляются истинные рефлексы. Чуть раньше, в 1,5 месяца, появляется защитный мигательный рефлекс. В конце первого полугодия формируются тонические рефлексы с глаз на мышцы шеи. Они выражаются в том, что при освещении глаз голова быстрым движением откидывается назад, а тело впадает в опистотонус (состояние, при котором тело выгибается назад вследствие повышения тонуса разгибателей). Рефлекс положения тела в пространстве формируется после рождения, хотя рецепторы (кожные, зрительные и др.) созревают ещё в эмбриональном периоде.
В процессе онтогенеза более простые двигательные рефлексы (шагания, плавания, ползания) исчезают, но возникают более сложные, такие, как реакция переворачивания на живот, ползание на животе и на четвереньках, сидение, вставание и, наконец, к концу года – хождение. В осуществлении этих реакций принимают участие другие отделы головного мозга, в том числе и кора больших полушарий.

 

57. Промежуточный мозг
Наиболее крупным отделом промежуточного мозга (diencephalon) является парный таламус (thalamus), который также называется зрительным бугром. Таламус имеет овоидную форму, свободные медиальную и верхнюю поверхности, а латерально-нижней поверхностью он сообщается с другими отделами мозга. Серое вещество таламуса образовано ядрами, из которых переднее связано с обонятельным анализатором, заднее — со зрительным, а через латеральное ядро к коре головного мозга направляются все чувствительные проводники.
В верхнезадней части таламуса располагается надталамическая область, которая также называется эпиталамусом (epitalamus). Эпиталамус образует шишковидное тело, которое посредством поводков крепится к таламусу. Шишковидное тело (corpus pineale) представляет собой железу внутренней секреции, которая отвечает за синхронизацию биоритмов организма с ритмами окружающей среды.
Позади таламуса располагаются медиальные коленчатые тела, являющиеся подкорковыми центрами слуха, латеральные коленчатые тела, представляющие собой подкорковые центры зрения, а также заталамическая область, относящаяся к метаталамусу. Под таламусом располагается так называемый гипоталамус. Эта область включает в себя сосцевидные тела, являющиеся подкорковыми центрами обоняния, гипофиз, зрительный перекрест (chiasma opticum), II пары черепных нервов, серый бугор, представляющий собой вегетативный центр обмена веществ и терморегуляции. В гипоталамусе содержатся ядра, контролирующие эндокринные и вегетативные процессы.
Структуры гипоталамуса ограничивают нижнюю часть полости промежуточного мозга, которая представляет собой щель между медиальными поверхностями таламуса и называется III желудочком (ventriculus tertius).
Спереди III желудочек ограничивается столбами свода, а сверху покрывается сосудистой оболочкой, которая через расположенное у переднего конца таламуса межжелудочковое отверстие проникает в боковые желудочки, являющиеся полостью конечного мозга, обеспечивая связь между боковыми желудочками и III желудочком.
Все эти отделы, кроме мозжечка, сообщаются с периферией при помощи черепных нервов и имеют общее название мозгового ствола (truncus cerebri). В мозговом стволе на всем его протяжении содержатся нейроны ретикулярной формации, которые имеют слабо ветвящиеся дендриты и сильно ветвящиеся аксоны, идущие в различных направлениях. Благодаря ретикулярной формации достигается необходимый уровень активности клеток коры полушарий большого мозга.
Гипоталамус (подбугорье) - вентральная часть промежуточного мозга, куда входят: зрительный перекрест, серый бугор, воронка гипофиза и сосочковые тела. Сюда же относится и гипофиз (главная эндокринная железа) . Гипоталамус называют "сомато-психическим перекрестком", который играет роль посредника, трансформатора психосоматических процессов.
Таламус является передаточной чувствительной станцией для всех видов чувствительности и поэтому имеет важное значение в формировании ощущений. Таламус также принимает участие в активизации процессов внимания и в организации эмоций. На уровне таламуса происходит формирование сложных психорефлексов, эмоций смеха и плача.
Эпиталамус (надбугорье) - Он принимает участие в развитии и регуляции функций половой системы, регулирует электролитный и углеводный обмен, работу надпочечников. Эпифиз (как бывший третий глаз) реагирует на изменения долготы дня, являясь своеобразными биологическими часами, регулятором суточной, сезонной и годичной активности организма.
Метаталамус (забугорье) - часть промежуточного мозга. Латеральные коленчатые тела вместе с верхним двухолмием образуют подкорковые центры зрения. Медиальные коленчатые тела вместе с нижним двухолмием формируют подкорковые центры слуха.

 

58. ЗНАЧЕНИЕ РАЗЛИЧНЫХ УЧАСТКОВ КОРЫ БОЛЬШИХ

ПОЛУШАРИЙ ГОЛОВНОГО МОЗГА

С давних времен между учеными идет спор о местонахождении (локализации) участков коры головного мозга, связанных с различными функциями организма. Были высказаны самые разнообразные и взаимно противоположные точки зрения. Одни считали, что каждой функции нашего организма соответствует строго определенная точка в коре головного мозга, другие отрицали наличие каких бы то ни было центров; любую реакцию они приписывали всей коре, считая ее целиком однозначной в функциональном отношении. Метод условных рефлексов дал возможность И. П. Павлову выяснить ряд неясных вопросов и выработать современную точку зрения.

В коре головного мозга нет строго дробной локализации фун кций. Это следует из экспериментов над животными, когда после разрушения определенных участков коры, например двигательного анализатора, через несколько дней соседние участки берут на себя функцию разрушенного участка и движения животного восстанавливаются.

Эта способность корковых клеток замещать функцию выпавших участков связана с большой пластичностью коры головного мозга.

И. П. Павлов считал, что отдельные области коры имеют разное функциональное значение. Однако между этими областями не существует строго определенных границ. Клетки одной области переходят в соседние области.

Рисунок 1. Схема связи отделов коры с рецепторами.

1 – спинной или продолговатый мозг; 2 – промежуточный мозг; 3 – кора головного мозга

 

В центре этих областей находятся скопления наиболее специализированных клеток-так называемые ядра анализатора, а на периферии-менее специализированные клетки.

В регуляции функций организма принимают участие не строго очерченные какие-то пункты, а многие нервные элементы коры.

Анализ и синтез поступающих импульсов и формирование ответной реакции на них осуществляются значительно большими областями коры.

Рассмотрим некоторые области, имеющие преимущественно то или иное значение. Схематическое расположение местонахождения этих областей приведено на рисунке 1.

 

Двигательные функции. Корковый отдел двигательного анализатора расположен главным образом в передней центральной извилине, кпереди от центральной (роландовой) борозды. В этой области находятся нервные клетки, с деятельностью которых связаны все движения организма.

Отростки крупных нервных клеток, находящихся в глубоких слоях коры, спускаются в продолговатый мозг, где значительная часть их перекрещивается, т. е. переходит на противоположную сторону. После перехода они опускаются по спинному мозгу, где перекрещивается остальная часть. В передних рогах спинного мозга они вступают в контакт с находящимися здесь двигательными нервными клетками. Таким образом, возбуждение, возникшее в коре, доходит до двигательных нейронов передних рогов спинного мозга и затем уже по их волокнам поступает к мышцам. Ввиду того что в продолговатом, а частично и в спинном мозгу происходит переход (перекрест) двигательных путей на противоположную сторону, возбуждение, возникшее в левом полушарии головного мозга, поступает в правую половину тела, а в левую половину тела поступают импульсы из правого полушария. Вот почему кровоизлияние, ранение или какое-либо другое поражение одной из сторон больших полушарий влечет за собой нарушение двигательной деятельности мышц противоположной половины тела.

Рисунок 2. Схема отдельных областей коры больших полушарий головного мозга.

1 – двигательная область;

2 – область кожной

и проприорицептивной чувствительности;

3 – зрительная область;

4 – слуховая область;

5 – вкусовая область;

6 – обонятельная область

 

В передней центральной извилине центры, иннервирующие разные мышечные группы, расположены так, что в верхней части двигательной области находятся центры движений нижних конечностей, затем ниже-центр мышц туловища, еще ниже-центр передних конечностей и, наконец, ниже всех-центры мышц головы.

Центры разных мышечных групп представлены неодинаково и занимают неравномерные области.

 

Функции кожной и проприоцептивной чувствительности. Область кожной и проприоцептивной чувствительности у человека находится преимущественно позади центральной (роландовой) борозды в задней центральной извилине.

Локализация этой области у человека может быть установлена методом электрического раздражения коры головного мозга во время операций. Раздражение различных участков коры и одновременньш опрос больного об ощущениях, которые он при этом испытывает, дают возможность составить довольно четкое представление об указанной области. С этой же областью связано так называемое мышечное чувство. Импульсы, возникающие в проприорецепторах-рецепторах, находящихся в суставах, сухожилиях н мышцах, поступают преимущественно в этот отдел коры.

Правое полушарие воспринимает импульсы, идущие по центростремительным волокнам преимущественно с левой, а левое полушарие-преимущественно с правой половины тела. Этим объясняется то, что поражение, допустим, правого полушария вызовет нарушение чувствительности преимущественно левой стороны.

Слуховые функции. Слуховая область расположена в височной доле коры. При удалении височных долей нарушаются сложные звуковые восприятия, так как нарушается возможность анализа и синтеза звуковых восприятий.

Зрительные функции. Зрительная область находится в затылочной доле коры головного мозга. При удалении затылочных долей головного мозга у собаки наступает потеря зрения. Животное не видит, натыкается на предметы. Сохраняются только зрачковые рефлексы У человека нарушение зрительной области одного из полушарий вызывает выпадение половины зрения каждого глаза. Если поражение коснулось зрительной области левого полушария, то выпадают функции носовой части сетчатки одного глаза и височной части сетчатки другого глаза.

Такая особенность поражения зрения связана с тем, что зрительные нервы по пути к коре частично перекрещиваются.

 

Морфологические основы динамической локализации функций в коре полушарий большого мозга (центры мозговой коры).

Знание локализации функций в коре головного мозга имеет огромное теоретическое значение, так как дает представление о нервной регуляции всех процессов организма и приспособлении его к окружающей среде. Оно имеет и большое практическое значение для диагностики мест поражения в полушариях головного мозга.

Представление о локализации функций в коре головного мозга связано прежде всего с понятием о корковом центре. Еще в 1874 г. киевский анатом В. А, Бец выступил с утверждением, что каждый учасгок коры отличается по строению от других участков мозга. Этим было положено начало учению о разнокачественности коры головного мозга - цитоархитектонике (цитос - клетка, архитектонес - строю). В настоящее время удалось выявить более 50 различных участков коры - корковых цитоархитектонических полей, каждое из которых отличается от других по строению и расположению нервных элементов. Из этих полей, обозначаемых номерами, составлена специальная карта мозговой коры человека .

По И.П.Павлову, центр-это мозговой конец так называемого анализатора. Анализатор - это нервный механизм, функция которого состоит в том, чтобы разлагать известную сложность внешнего и внутреннего мира на отдельные элементы, т. е. производить анализ. Вместе с тем благодаря широким связям с другими анализаторами здесь происходит и синтезирование анализаторов друг с другом и с разными деятельностями организма.

 

Рисунок 3. Карта цитоархитектонических полей мозга человека (по данным института моэга АМН СССР) Вверху - верхнелатеральная поверхность,внизу- медиальная поверхносгь. Объяснение в тексте.

 

В настоящее время вся мозговая кора рассматривается как сплошная воспринимающая поверхность. Кора - это совокупность корковых концов анализаторов. С этой точки зрения мы и рассмотрим топографию корковых отделов анализаторов, т. е. главнейшие воспринимающие участки коры полушарий большого мозга.

Прежде всего рассмотрим корковые концы анализаторов, воспринимающих раздражения из внутренней среды организма .

1. Ядро двигательного анализатора, т. е. анализатора проприоцептивных (кинестетических) раздражении, исходящих от костей, суставов, скелетных мышц и их сухожилий, находится в предцентральной извилине (поля 4 и 6} и lobulus paracentralis. Здесь замыкаются двигательные условные рефлексы. Двигательные параличи, возникающие при поражении двигательной зоны, И. П. Павлов объясняет не повреждением двигательных эфферентных нейронов, а нарушением ядра двигательного анализатора, вследствие чего кора не воспринимает кинестетические раздражения и движения становятся невозможными. Клетки ядра двигательного анализатора заложены в средних слоях коры моторной зоны. В глубоких ее слоях (V, отчасти VI) лежат гигантские пирамидные клетки, представляющие собой эфферентные нейроны, которые И. П. Павлов рассматривает как вставочные нейроны, связывающие кору мозга с подкорковыми ядрами, ядрами черепных нервов и передними рогами спинного мозга, т. е. с двигательными нейронами. В предцентральной извилине тело человека, так же как и в задней, спроецировано вниз головой. При этом правая двигательная область связана с левой половиной тела и наоборот, ибо начинающиеся от нее пирамидные пути перекрещиваются частью в продолговатом, а частью в спинном мозге. Мышцы туловища, гортани, глотки находятся под влиянием обоих полушарий. Кроме предцентральной извилины, проприоцептивные импульсы (мышечно-суставная чувствительность) приходят и в кору постцентральной извилины.

2. Ядро двигательного анализатора, имеющего-отношение к сочетанному повороту головы и глаз в противоположную сторону, помещается в средней лобной извилине, в премоторной области (поле 8). Такой поворот происходит и при раздражении поля 17, расположенного в затылочной доле в соседстве с ядром зрительного анализатора. Так как при сокращении мышц глаза в кору мозга (двигательный анализатор, поле 8) всегда поступают не только импульсы от рецепторов этих мышц, но и импульсы от еет-чатки (зрительный анализатор, поле 77), то различные зрительные раздражения всегда сочетаются с различным положением глаз, устанавливаемым сокращением мышц глазного яблока.

3. Ядро двигательного анализатора, посредством которого происходит синтез целенаправленных сложных профессиональных, трудовых и спортивных движений, помещается в левой (у правшей) нижней теменной дольке, в gyrus supramarginalis (глубокие слои поля 40). Эти координированные движения, образованные по принципу временных связей и выработанные практикой индивидуальной жизни, осуществляются через связь gyrus supramarginalis с предцентральной извилиной. При поражении поля 40 сохраняется способность к движению вообще, но появляется неспособность совершать целенаправленные движения, действовать - апраксия (праксия - действие, практика).

4. Ядро анализатора положения и движения головы - статический анализатор (вестибулярный аппарат) в коре мозга точно еще не локализован. Есть основания предполагать, что вестибулярный аппарат проецируется в той же области коры, что и улитка, т. е. в височной доле. Так, при поражении полей 21 и 20, лежащих в области средней и нижней височных извилин, наблюдается атаксия, т. е расстройство равновесия, покачивание тела при стоянии. Этот анализатор, играющий решающую роль в прямохождении человека, имеет особенное значение для работы летчиков в условиях реактивной авиации, так как чувствительность вестибулярного аппарата на самолете значительно понижается.

5. Ядро анализатора импульсов, идущих от внутренностей и сосудов, находится в нижних отделах передней и задней центральных извилин. Центростремительные импульсы от внутренностей, сосудов, непроизвольной мускулатуры и желез кожи поступают в этот отдел коры, откуда отходят центробежные пути к подкорковым вегетативным центрам.

В премоторной области (поля 6 и 8) совершается объединение вегетативных функций.

Нервные импульсы из внешней среды организма поступают в корковые концы анализаторов внешнего мира.

1. Ядро слухового анализатора лежит в средней части верхней височной извилины, на поверхности, обращенной к островку, - поля 41, 42, 52, где проецирована улитка. Повреждение ведет к глухоте.

2. Ядро зрительного анализатора находится в затылочной доле - поля 18, 19. На внутренней поверхности затылочной доли, по краям sulcus Icarmus, в поле 77 заканчивается зрительный путь. Здесь спроецирована сетчатка глаза. При поражении ядра зрительного анализатора наступает слепотa. Выше поля 17 расположено поле 18, при поражении которого зрение сохраняется и только теряется зрительная память. Еще выше находится поле при поражении которого утрачивается ориентация в непривычной обстанвке.

 

3. Ядро вкусового анализатора, по одним данным, находится в нижней постцентральной извилине, близко к центрам мышц рта и языка, по другим - в ближайшем соседстве с корковым концом обонятельного анализатора, чем объясняется тесная связь обонятельных и вкусовых ощу-ний. Установлено, что расстройство вкуса наступает при поражении поля 43.

Анализаторы обоняния, вкуса и слуха каждого полушария связаны с рецепторами соответствующих органов обеих сторон тела.

4. Ядро кожного анализатора (осязательная, болевая и температурная чувствительность) находится в постцентральной извилине (поля 7, 2, 3) и в пе верхней теменной области (поля 5 и 7).

 

Частный вид кожной чувствительности - узнавание предметов на ощупь - стереогнозия (стереос - пространственный, гнозис - знание) связана с участком коры верхней теменной дольки (поле 7) перекрестно: левое полушарие соответствует правой руке, правое - левой руке. При поражении поверхностных слоев поля 7 утрачивается способность узнавать предметы на ощупь, при закрытых глазах.

 

Биоэлектрическая активность головного мозга.

Отведение биопотенциалов головного мозга - электроэнцефалография-дает представление об уровне физиологической активности головного мозга. Кроме метода электроэнцефалографии-записи биоэлектрических потенциалов, используется метод энцефалоскопии-регистрации колебаний яркости свечения множества точек мозга (от 50 до 200).

-ритм.a-ритма характерны частоты в диапазоне 8-15 Гц, при амплитуде колебаний 50-100 мкВ. Он регистрируется только у людей и высших обезьян в состоянии бодрствования, при закрытых глазах и при отсутствии внешних раздражителей. Зрительные раздражители тормозят a-ритмы. Для D- и Q-, b-, aЭлектроэнцефалограмма является интегративным пространственно-временным показателем спонтанной электрической активности мозга. В ней различают амплитуду (размах) колебаний в микровольтах и частоту колебаний в герцах. В соответствии с этим в электроэнцефалограмме различают четыре типа волн:

-ритм может вообще отсутствовать.aУ отдельных людей, обладающих живым зрительным воображением,

-ритм - медленные (с частотой 0,5-3,5 Гц), высокоамплитудные (до 300 мкВ) колебания электрической активности мозга .D-ритма от 4 до 8 Гц, амплитуда от 100 до 150 мкВ Во время сна появляется и Q-ритм. Он же наблюдается при отрицательных эмоциях, болезненных состояниях. Частота потенциалов Q-ритм. Это электрические волны с амплитудой от 5 до 30 мкВ и частотой от 15 до 100 Гц Он хорошо регистрируется в лобных и центральных областях головного мозга. Во время сна появляется bДля деятельного мозга характерен (

Помимо рассмотренных видов электрической активности, у человека регистрируется Е-волна (волна ожидания раздражителя) и веретенообразные ритмы. Волна ожидания регистрируется при выполнении сознательных, ожидаемых действий. Она предшествует появлению ожидаемого раздражителя во всех случаях, даже при неоднократном его повторении. По-видимому, ее можно рассматривать как электроэнцефалографический коррелят акцептора действия, обеспечивающего предвидение результатов действия до его завершения. Субъективная готовность отвечать на действие стимула строго определенным образом достигается психологической установкой (Д. Н. Узнадзе). Веретенообразные ритмы непостоянной амплитуды, с частотой от 14 до 22 Гц, появляются во время сна. Различные формы жизне деятельности приводят к существенному изменению ритмов биоэлектрической активности мозга.

-ритм при этом исчезает. При мышечной работе статического характера наблюдается десинхронизация электрической активности мозга. Появляются быстрые колебания с низкой амплитудой.Во время динамической работы пе-. риоды десинхронизированной и синхронизированной активности наблюдаются соответственно в моменты рабогы и отдыха.a-ритм, bПри умственной работе усиливается

Образование условного рефлекса сопровождается десинхронизацией волновой активности мозга.

Десинхронизация волн происходит при переходе от сна к бодрствованию . При этом веретенообразные ритмы сна сменяются

-ритмом, увеличивается электрическая активность ретикулярной формации. Синхронизация (одинаковые по фазе и направлению волны)b

характерна для тормозного процесса. Она наиболее отчетливо выражена при выключении ретикулярной формации стволовой части мозга. Волны электроэнцефалограммы, по мнению большинства исследователей, являются результатом суммации тормозных и возбуждающих постсинаптических потенциалов. Электрическая активность мозга не является простым отражением обменных процессов в нервной ткани. Установлено, в частности, что в импульсной активности отдельных скоплений нервных клеток обнаруживаются признаки акустического и семантического кодов.

59. Вегетативная нервная система(systema nervosum autonomicum; синоним: автономная нервная система, непроизвольная нервная система, висцеральная нервная система) — часть нервной системы, обеспечивающая деятельность внутренних органов, регуляцию сосудистого тонуса, иннервацию желез, трофическую иннервацию скелетной мускулатуры, рецепторов и самой нервной системы. Взаимодействуя с соматической (анимальной) нервной системой и эндокринной системой, она обеспечивает поддержание постоянства гомеостаза и адаптацию в меняющихся условиях внешней среды.

Вегетативная нервная система имеет центральный и периферический отделы. В центральном отделе различают надсегментарные (высшие) и сегментарные (низшие) вегетативные центры. Надсегментарные вегетативные центры сосредоточены в головном мозге — в коре головного мозга (преимущественно в лобных и теменных долях), гипоталамусе, обонятельном мозге, подкорковых структурах (полосатое тело), в стволе головного мозга (ретикулярная формация), мозжечке и др. Сегментарные вегетативные центры расположены и в головном, и в спинном мозге. Вегетативные центры головного мозга условно подразделяют на среднемозговые и бульбарные (вегетативные ядра глазодвигательного, лицевого, языко-глоточного и блуждающего нервов), а спинного мозга — на пояснично-грудинные и крестцовые (ядра боковых рогов сегментов CVIII—LIII и SII—SIV соответственно).

Моторные центры иннервации неисчерченных (гладких) мышц внутренних органов и сосудов расположены в предцентральной и лобной областях. Здесь же находятся центры рецепции из внутренних органов и сосудов, центры потоотделения, нервной трофики, обмена веществ. В полосатом теле сосредоточены центры терморегуляции, слюно- и слезоотделения. Установлено участие мозжечка в регуляции таких вегетативных функций, как зрачковый рефлекс, трофика кожи. Ядра ретикулярной формации составляют надсегментарные центры жизненно важных функций — дыхательной, сосудодвигательной, сердечной деятельности, глотания и др.

Периферический отдел вегетативная нервная система представлен нервами и узлами, расположенными вблизи внутренних органов (экстрамурально) либо в их толще (интрамурально). Вегетативные узлы соединяются между собой нервами, образуя сплетения, например легочное, сердечное, брюшное аортальное сплетение.

На основе функциональных различий в вегетативной нервной системе выделяют два отдела — симпатический и парасимпатический. К симпатической нервной системе относятся сегментарные вегетативные центры, нейроны которых расположены в боковых рогах 16 сегментов спинного мозга (от CVIII до LIII), их аксоны (белые, преганглионарные, соединительные ветви) выходят с передними корешками соответствующих 16 спинномозговых нервов из позвоночного канала и подходят к узлам (ганглиям) симпатического ствола; симпатический ствол — цепь из 17—22 пар соединенных между собой вегетативных узлов по обеим сторонам позвоночника на всем его протяжении. Узлы симпатического ствола связаны серыми (постганглионарными) соединительными ветвями со всеми спинномозговыми нервами, висцеральными (органными) ветвями с предпозвоночными (превертебральными) и (или) органными вегетативными нервными сплетениями (или узлами). Предпозвоночные сплетения расположены вокруг аорты и ее крупных ветвей (грудное аортальное, чревное сплетение и др.), органные сплетения — на поверхности внутренних органов (сердце, желудочно-кишечный тракт), а также в их толще (рис.).

К парасимпатической нервной системе относят вегетативные центры, заложенные в стволе головного мозга и представленные парасимпатическими ядрами III, VII, IX, Х пар черепных нервов, а также вегетативные центры в боковых рогах SII—IV сегментов спинного мозга. Преганглионарные волокна из этих центров идут в составе III, VII (большой каменистый, барабанная струна), IX (малый каменистый) и Х пары черепных нервов к парасимпатическим узлам в области головы — ресничному, крыло-небному, ушному, поднижнечелюстному и парасимпатическим узлам блуждающего нерва, лежащим в стенках органов (например, узлы подслизистого сплетения стенки кишки). От этих узлов отходят постганглионарные парасимпатические волокна к иннервируемым органам. От парасимпатических центров в крестцовом отделе спинного мозга идут тазовые внутренностные нервы, к органным вегетативным сплетениям органов малого таза и конечных отделов толстой кишки (нисходящая и сигмовидная ободочные, прямая), в которых имеются как симпатические, так и парасимпатические нейроны.


Поделиться:

Дата добавления: 2015-01-05; просмотров: 147; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты