Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Методы очистки коллоидных растворов




Для удаления низкомолекулярных примесей (в частности, дестабилизирующих электролитов) золи после получения часто подвергают очистке. Методами очистки золей являются диализ и ультрафильтрация.

Диализ основан на разнице в скорости диффузии небольших молекул или ионов и частиц коллоидных размеров через полупроницаемую перегородку – мембрану. Для этих целей применяют мембраны, изготовленные из животных и растительных перепонок, задубленного желатина, мембраны из коллодия, ацетата целлюлозы и целлофана, пергаментной бумаги, керамических пористых материалов и др.

Небольшие молекулы и ионы из золя проникают через мембрану и диффундируют в воду, контактирующую с мембраной, а молекулы воды при этом проникают через мембрану в обратном направлении. В результате после очистки коллоидная система оказывается разбавленной. Очистка коллоидных растворов таким способом требует значительного времени (дни, недели и даже месяцы). Для ускорения диализа можно применять разные приемы, например, увеличивать площадь мембраны, уменьшать слой очищаемой жидкости или часто менять внешнюю жидкость (воду), повышать температуру, прикладывать электрическое поле (электродиализ). В частности, электродиализ позволяет закончить процесс диализа в течение нескольких часов. В производственных условиях диализом очищают от солей белки (желатин, агар-агар, гуммиарабик), красители, силикагель, дубильные вещества и др.

В процессе ультрафильтрации мембраной задерживаются частицы дисперсной фазы или макромолекулы, а дисперсионная среда с нежелательными низкомолекулярными примесями проходит через мембрану. Ультрафильтрация относится к баромембранным процессам, в отличие от диализа ее проводят под давлением. При ультрафильтрации достигают высокой степени очистки золей при одновременном их концентрировании. Иногда говорят, что ультрафильтрация – это диализ, проводимый под давлением, хотя это и не совсем верно (особо любознательные из Вас могут подумать почему).

Применение мембран с определенным размером пор позволяет разделить коллоидные частицы на фракции по размерам и ориентировочно определить эти размеры. Так были найдены размеры некоторых вирусов. Все это говорит о том, что ультрафильтрация является не только методом очистки коллоидных систем, но и может быть использована как способ дисперсионного анализа и для препаративного разделения дисперсных систем.

Интересным примером сочетания диализа и ультрафильтрации является аппарат «искусственная почка», предназначенный для временной замены функции почек при острой почечной недостаточности. Он воспроизводит такие функции почек, как выделение отработанных продуктов из крови, регулирование кровяного давления и водно-электролитного баланса. В искусственной почке из плазмы (плазма – жидкая часть крови) удаляются мочевина, мочевая кислота, креатинин, ионы калия, токсины и другие вещества Аппарат оперативным путем подключается к системе кровообращения больного. Кровь под давлением, создаваемым пульсирующим насосом («искусственное сердце»), протекает в узком зазоре между двумя мембранами, омываемыми снаружи физиологическим раствором (физиологические растворы – это водные растворы, близкие по солевому составу, величине рН и другим свойствам к крови здорового человека, например, раствор, содержащий 0,9 % NaCl и 4,5 % глюкозы). Благодаря большой площади мембран (~15000 см2) из крови за 3-4 часа удаляются все вышеперечисленные «шлаки».

Размер пор мембран для ультрафильтрации составляет величину от 1 до 10 нм. Если использовать мембраны с более тонкими порами (менее 1 нм), то происходит задержка не только дисперсных частиц, но и относительно крупных молекул и даже ионов (размер ионов в водном растворе довольно значителен благодаря образованию гидратной оболочки). Правда для проведения такого процесса требуется рабочее давление большее, чем в случае ультрафильтрации. Этот баромембранный процесс называется гиперфильтрацией или обратным осмосом.

Интересно отметить, что метод гиперфильтрации наряду с методом перегонки применяется в быту и промышленности для очистки и деионизации воды.

В результате диализа и ультрафильтрации из золей за счет избирательного переноса частиц через мембрану удаляются электролиты. Различия между этими процессами заключаются в механизме и движущей силе переноса вещества. В случае диализа очистка осуществляется за счет диффузии ионов или молекул, которые преимущественно имеют размер, существенно меньший, чем размер коллоидных частиц, а в случае ультрафильтрации разделение ионов, молекул и коллоидных частиц происходит по принципу сита. Движущая сила ультрафильтрации – градиент давления, а не градиент концентрации, как в случае диализа. В процессе очистки диализом золь разбавляется, а при ультрафильтрации – концентрируется.

 

Заключение
Коллоидные дисперсные системы (дисперсии) – микрогетерогенные образования, в которых одно мелкораздробленное вещество – дисперсная фаза – равномерно распределено (диспергировано) в другой фазе – дисперсионной среде. В коллоидных системах размер частиц дисперсной фазы составляет 10–9–10–7 м, т.е. лежит в интервале от нанометров до долей микрометров. Эта область превосходит размер типичной малой молекулы, но меньше размера объекта, видимого в обычном оптическом микроскопе.
Вся природа — организмы животных и растений, гидросфера и атмосфера, земная кора и недра — представляет собой сложную совокупность множества разнообразных и разнотипных грубодисперсных и коллоидно-дисперсных систем. Дисперсное состояние вполне универсально и при соответствующих условиях в него может перейти любое тело. Этим определяется особое положение коллоидной химии – науки, занимающейся изучением коллоидных систем и их поверхностных явлений, развитие которой осуществляется в непосредственном контакте и взаимодействии со многими, часто не связанными между собой областями науки, промышленности, медицины и сельского хозяйства.
Важный вклад в изучение коллоидных систем организма человека внесли труды Л. Михаэлиса, Г.Шаде, В. Оствальда, П. Ребиндера, Ф.Гофмейстера, Э. Абдергальдена, Г.Фрейндлиха и др.
Коллоидная химия изучает все многообразие коллоидных систем, включающее следующие их типы:
1.Золи. 2. Гели.3. Эмульсии. 4. Пены. 5. Аэрозоли.
Основными свойствами коллоидного состояния веществ в биологических системах являются: 1.Броуновское движение частиц дисперсной фазы. 2. Неспособность к ультрафильтрации и прохождению их через полупроницаемые мембраны. 3. Низкие значения или отсутствие осмотического потенциала. 4.Способность к коагуляции. 5. Поверхностные свойства – способность к адсорбции различных веществ. 5. Переходы золь-гель и обратно.6. способность к набуханию.
Глобальная роль коллоидов заключается в том, что они являются основными компонентами таких биологических образований как живые организмы. Все вещества организма человека представляют собой коллоидные системы.
Коллоиды поступают в организм в виде пищевых веществ и в процессе пищеварения превращаются в специфические, характерные для данного организма коллоиды.
Коллоидно-химическая физиология человека – это раздел науки, изучающий функционирование систем организма человека, образующих коллоидные соединения.Можно сказать, что весь организм человека – это сложная коллоидная система в ее связи с поверхностными явлениями.
Из коллоидов, богатых белками, состоят кожа, мышцы, ногти, волосы, кровеносные сосуды, легкие, весь желудочно-кишечный тракт и многое другое, без чего немыслима сама жизнь.
С точки зрения коллоидно-химической физиологии человека его организм представляет собой сложный комплекс коллоидных систем в их постоянном динамическом взаимодействии. Мельчайшей структурно-функциональной единицей организма является клетка. Уже сама клетка представляет собой сложный комплекс коллоидных образований, основными из которых являются клеточные мембраны, гиалоплазма, ядро, ЭПР и др. Основными функциями коллоидов мембран клетки являются: барьерная, метаболическая, разделительную, каркасную, защитную поддержания тургора в растительных клетках, транспортная, контактная (плазмодесмы, десмосомы), ферментативная и другие. Мембраны принимают участие в образовании клеточных органелл (ядра, митохондрий, лизосом, комплекса Гольджи и др.). Одной из важнейших функций мембран является их участие в лиганд-рецепторном взаимодействии (гликокаликс), обеспечивающем «узнавание» и распознавание чужеродной антигенной информации и обеспечение так называемых клеточных контактов.
Гиалоплазма клеток также представляет собой сложную коллоидно-дисперсную систему, в функции которой входит формирование цитоскелета клетки (коллоидно-белковая система, пронизывающая клетку). Цитоскелет обеспечивает движение клеток, цитоплазмы, органелл, транспорт веществ и формирует каркас клетки. Гиалоплазма и ее коллоиды объединяют клетку в единое целое.
Наиболее изученной является такая коллоидная система организма как кровь. Кровь – это совокупность дисперсных систем. В плазме крови дисперсной фазой являются белки и жиры, а дисперсной средой вода. В свою очередь, форменные элементы крови могут рассматриваться как дисперсная фаза по отношению к плазме, которая в этом случае выполняет роль дисперсной среды. Сами клетки крови – тромбоциты, эритроциты, лейкоциты представляют собой, как и любые другие клетки организма, сложные по составу дисперсные системы. Важнейшие функции крови – дыхательная, питательная, транспортная, выделительная, терморегуляционная, регуляторная (pH, гормоны и др.), защитная (системы свёртывания - противосвёртывания, антитела, цитокины).
Практически любая жидкость или ткань организма человека представляет собой коллоидно-дисперсную среду. Таковыми являются, например, лимфа, молоко содержимое желудочно-кишечного тракта, желчь, спинномозговая жидкость, моча.
Моча представляет собой гидрофильный золь, состоящий из мицелл уратов, фосфатов и оксалатов. Молоко грудных желез и лимфа это сочетание эмульсии с белковым золем. Соединительнотканные волокна это гели.
При патологических изменениях в организме в коллоидном состоянии находятся белки отечной жидкости (транссудаты) или белки в воспалительных экссудатах. Нарушение коллоидных свойств вышеуказанных сред организма приводят в крови к образованию тромбов, и как следствие развитие инсультов и инфарктов. В желчи и моче при этом образуются камни, в суставной ткани – выпадение солей мочевой кислоты (подагра).
Таким образом, коллоидные системы суть основа химического состояния всех веществ, из которых построены клетки, ткани и органы организма человека. Этим и обусловлено многообразие функций, которые обеспечивают в организме коллоидные системы. Многообразие их функций можно условно разделить на 3 группы, которые безусловно тесно связаны между собой.
1.Функции, связанные с физико-химическими свойствами коллоидов:
1.1 Обеспечение и регуляция проницаемости мембран
1.2 Регуляция онкотического и (в меньшей степени) осмотического давления.
1.3 Обеспечение и регуляция поверхностного натяжения сред организма.
1.4 Регуляция рН
1.5 Ферментативная функция.
1.6 Детоксикация организма.
2.Функции общебиологического значения:
2.1 Барьерная и разделительная.
2.2 Опорно-двигательная.
2.3 Транспортная
2.4 Питательная.
2.5 Биосинтетическая.
2.6 Дыхательная.
2.7 Выделительная.
2.8 Терморегуляционная.
2.9 Репродуктивная.
2.10 Обеспечение клеточных контактных взаимодействий и распознавание генетической информации.
2.11 Защитная (иммунологические реакции, антитела – иммуноглобулины).
3.Специфические функции:
3.1 Регуляторные белки (гормоны, медиаторы иммунитета – цитокины, и др.)
3.2 Обеспечение свертывания крови и фибринолиза
3.3 Регуляция сосудистого тонуса (калликреин-кининовый каскад, система белков ренин-ангиотензин и др.).
3.4 Обеспечение иммунологических реакций (каскад белков системы комплемента и др.).
3.5 Рецепторная.
Применение коллоидов находит все большее применение в медицинской практике.
От использования простых коллоидных золей для местной заживляющей терапии и применения солей алюминия и магния для понижения кислотности желудка до использования гидрокси алюминия в качестве стабилизатора и носителя лекарственных веществ и далее к использованию липосом и нанокапсул.

 

 


Поделиться:

Дата добавления: 2015-01-10; просмотров: 179; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты