Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



II. Основные этапы развития физики Становление физики (до 17 в.).

Читайте также:
  1. I. Основные положения
  2. II. Начало процесса исторического развития общества.
  3. II. Организм как целостная система. Возрастная периодизация развития. Общие закономерности роста и развития организма. Физическое развитие……………………………………………………………………………….с. 2
  4. II. Основные правила черной риторики
  5. II. Основные принципы и правила служебного поведения государственных гражданских служащих Федеральной налоговой службы
  6. II. Основные цели и задачи Программы, срок и этапы ее реализации, целевые индикаторы и показатели
  7. III династия Ура. Особенности политического и социально-экономического развития данного периода.
  8. III. СТАНОВЛЕНИЕ МОНЕТНОГО ОБРАЩЕНИЯ
  9. III.2.1) Понятие преступления, его основные характеристики.

Физ. явления окружающего мира издавна привлекали внимание людей. Попытки причинного объяснения этих явлений предшествовали созданию Ф. в совр. смысле этого слова. В греко-римском мире (6 в. до н. э.- 2 в. н. э.) впервые зародились идеи об атомном строении вещества (Демокрит, Эпикур, Лукреций), была разработана геоцентрич. система мира (Птолемей), установлены простейшие законы статики (правило рычага), открыты закон прямолинейного распространения и закон отражения света, сформулированы начала гидростатики (закон Архимеда), наблюдались простейшие проявления электричества и магнетизма.

Итог приобретённых знаний в 4 в. дон. э. был подведён Аристотелем. Физика Аристотеля включала отдельные верные положения, но в то же время в ней отсутствовали многие прогрессивные идеи предшественников, в частности атомная гипотеза. Признавая значение опыта, Аристотель не считал его гл. критерием достоверности знания, отдавая предпочтение умозрит. представлениям. В средние века учение Аристотеля, канонизированное церковью, надолго затормозило развитие науки.

Наука возродилась лишь в 15-16 вв. в борьбе со схоластизированным учением Аристотеля. В сер. 16 в. Н. Коперник выдвинул гелиоцентрическую систему мира и положил начало освобождению естествознания от теологии. Потребности произ-ва, развитие ремёсел, судоходства и артиллерии стимулировали науч. исследования, опирающиеся на опыт. Однако в 15-16 вв. экспериментальные исследования носили в основном случайный характер. Лишь в 17 в. началось систематич. применение экспериментального метода в Ф., и это привело к созданию первой фундаментальной физ. теории - классич. механики Ньютона.

Формирование физики как науки (нач. 17 - кон. 18 вв.). Развитие Ф. как науки в совр. смысле этого слова берёт начало с трудов Г. Галилея (1-япол. 17 в.), к-рый понял необходимость математич. описания движения. Он показал, что воздействие на данное тело окружающих тел определяет не скорость, как считалось в механике Аристотеля, а ускорение тела. Это утверждение представляло собой первую формулировку закона инерции. Галилей открыл принцип относительности в механике (см. Галилея принцип относительности), доказал независимость ускорения свободного падения тел от их плотности и массы, обосновывал теорию Коперника. Значительные результаты были получены им и в др. областях Ф. Он построил зрительную трубу с большим увеличением и сделал с её помощью ряд астрономич. открытий (горы на Луне, спутники Юпитера и др.). Количеств. изучение тепловых явлений началось после изобретения Галилеем первого термометра. 1. Основные этапы развития химии



При изучении истории развития химии возможны два взаимно дополняющих подхода: хронологический и содержательный.

При хронологическом подходе историю химии принято подразделять на несколько периодов. Следует учитывать, что периодизация истории химии, будучи достаточно условной и относительной, имеет скорее дидактический смысл.

При этом на поздних этапах развития науки в связи с её дифференциацией неизбежны отступления от хронологического порядка изложения, поскольку приходится отдельно рассматривать развитие каждого из основных разделов науки.

Как правило, большинство историков химии выделяют следующие основные этапы её развития:[3]

1. Предалхимический период: до III в. н.э.

В предалхимическом периоде теоретический и практический аспекты знаний о веществе развиваются относительно независимо друг от друга. Происхождение свойств вещества рассматривает античная натурфилософия, практические операции с веществом являются прерогативой ремесленной химии.



2. Алхимический период: III – XVI вв.

Алхимический период, в свою очередь, разделяется на три подпериода:[4]

александрийскую,

арабскую

европейскую алхимию.

Алхимический период – это время поисков философского камня, считавшегося необходимым для осуществления трансмутации металлов.

В этом периоде происходит зарождение экспериментальной химии и накопление запаса знаний о веществе; алхимическая теория, основанная на античных философских представлениях об элементах, тесно связана с астрологией и мистикой. Наряду с химико-техническим "златоделием" алхимический период примечателен также и созданием уникальной системы мистической философии.

3. Период становления (объединения): XVII – XVIII вв.

В период становления химии как науки происходит её полная рационализация. Химия освобождается от натурфилософских и алхимических взглядов на элементы как на носители определённых качеств. Наряду с расширением практических знаний о веществе начинает вырабатываться единый взгляд на химические процессы и в полной мере использоваться экспериментальный метод. Завершающая этот период химическая революция окончательно придаёт химии вид самостоятельной науки, занимающейся экспериментальным изучением состава тел.

4. Период количественных законов (атомно-молекулярной теории): 1789 – 1860 гг.

Период количественных законов, ознаменовавшийся открытием главных количественных закономерностей химии – стехиометрических законов, и формированием атомно-молекулярной теории, окончательно завершает превращение химии в точную науку, основанную не только на наблюдении, но и на измерении.

5. Период классической химии: 1860 г. – конец XIX в.

Период классической химии характеризуется стремительным развитием науки: создаётся периодическая система элементов, теория валентности и химического строения молекул, стереохимия, химическая термодинамика и химическая кинетика; блестящих успехов достигают прикладная неорганическая химия и органический синтез. В связи с ростом объёма знаний о веществе и его свойствах начинается дифференциация химии – выделение её отдельных вет

Этапы развития биологии

 

Этапы развития биологии связаны с интересом к познанию мира живых существ, который возник на самых ранних стадиях зарождения человечества, отражая практические нужды людей. Естественное желание узнать, следует ли избегать встречи с теми или иными животными и растениями или же, наоборот, использовать их в своих целях, объясняет, почему первоначально интерес людей к живым формам проявляется в попытках их классификации, подразделения на полезные и опасные, болезнетворные, представляющие пищевую ценность, пригодные для изготовления одежды, предметов обихода, удовлетворения эстетических запросов. По мере накопления конкретных знаний наряду с представлением о разнообразии организмов возникла идея о единстве всего живого. Особенно велико значение этой идеи для медицины, так как это указывает на универсальность биологических закономерностей для всего органического мира, включая человека. В известном смысле история современной биологии как науки о жизни представляет собой цепь крупных открытий и обобщений, подтверждающих справедливость этой идеи и раскрывающих ее содержание. Важнейшим научным доказательством единства всего живого послужила клеточная теория Т. Шванна и М. Шлейдена (1839). Открытие клеточного строения растительных и животных организмов, уяснение того, что все клетки (несмотря на имеющиеся различия в форме, размерах, некоторых деталях химической организации) построены и функционируют в целом одинаковым образом, дали толчок исключительно плодотворному изучению закономерностей, лежащих в основе морфологии, физиологии, индивидуального развития живых существ. Открытием фундаментальных законов наследственности биология обязана Г.Менделю (1865), Г. де Фризу, К. Корренсу и К. Чермаку (1900), Т. Моргану (1910-1916), Дж. Уотсону и Ф. Крику (1953). Названные законы раскрывают всеобщий механизм передачи наследственной информации от клетки к клетке, а через клетки - от особи к особи и перераспределения ее в пределах биологического вида. Законы наследственности важны в обосновании идеи единства органического мира; благодаря им становится понятной роль таких важнейших биологических явлений, как половое размножение, онтогенез, смена поколений. Представления о единстве всего живого получили основательное подтверждение в результатах исследований биохимических (обменных, метаболических) и биофизических механизмов жизнедеятельности клеток. Хотя начало таких исследований относится ко второй половине XIX в., наиболее убедительны достижения молекулярной биологии, ставшей самостоятельным направлением биологической науки в 50-е гг. XX столетия, что связано с описанием Дж. Уотсоном и Ф. Криком (1953) строения дезоксирибонуклеиновой кислоты (ДНК). На основе доступа к личной биологической информации возможно ее целенаправленное изменение, в том числе путем введения генов от других видов. Такая возможность представляет собой важнейшее доказательство единства и универсальности базисных механизмов жизнедеятельности. Молекулярная биология уделяет главное внимание изучению в процессах жизнедеятельности роли биологических макромолекул (нуклеиновые кислоты, белки), закономерностей хранения, передачи и использования клетками наследственной информации. Молекулярно-биологические исследования раскрыли универсальные физико-химические механизмы, от которых зависят такие всеобщие свойства живого, как наследственность, изменчивость, специфичность биологических структур и функций, воспроизведение в ряду поколений клеток и организмов определенного строения. Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии свидетельствуют в пользу единства органического мира в его современном состоянии. Живое на планете представляет собой единое целое в историческом плане. Свое дальнейшее развитие, связанное с достижениями генетики и популяционной биологии, она получила в трудах А. Н. Северцова, Н. И. Вавилова, Р. Фишера, С. С. Четверикова, Ф. Р. Добжанского, Н. В. Тимофеева-Ресовского, С. Райта, И. И. Шмальгаузена, чья плодотворная научная деятельность относится к XX столетию. К. Линней (1735) ввел бинарную классификацию, согласно которой для определения положения организмов в системе живой природы указывается их принадлежность к конкретному роду и виду. Хотя бинарный принцип сохранен в современной систематике, оригинальный вариант классификации К. Линнея носит формальный характер. Биологи до создания теории эволюции относили живые существа к соответствующему роду и виду по их подобию друг другу, прежде всего близости строения. Каждый крупный шаг на пути познания фундаментальных законов жизни неизменно оказывал влияние на состояние медицины, приводил к пересмотру содержания и понимания механизмов патологических процессов. Соответственно пересматривались принципы организации лечебной и профилактической медицины, методы диагностики и лечения. Так, исходя из клеточной теории и разрабатывая ее дальше, Р. Вирхов создал концепцию клеточной патологии (1858), которая на долгое время определила главные пути развития медицины. Эта концепция, придавая особое значение в течении патологических состояний структурно-химическим изменениям на клеточном уровне, способствовала возникновению в практическом здравоохранении патологоанатомической, прозекторской службы. Применив генетико-биохимический подход в изучении болезней человека, А. Гаррод заложил основы молекулярной патологии (1908). Этим он дал ключ к пониманию практической медициной таких явлений, как различная восприимчивость людей к болезням, индивидуальный характер реакции на лекарственные препараты. Успехи общей и экспериментальной генетики 20-30-х годов ХХв. стимулировали исследования по генетике человека. В результате возник новый раздел патологии - наследственные заболевания, появилась особая служба практического здравоохранения — медико-генетические консультации. Геномика и современные молекулярно-генетические технологии открывают доступ к диагностике на уровне нуклеотидных последовательностей ДНК не только собственно генных болезней, но также предрасположенности к ряду тяжелых соматических патологических состояний (астма, диабет и др). Доступный уровень генодиагностики создает предпосылки для осознанного манипулирования с наследственным материалом людей в целях генотерапии и генопрофилактики заболеваний. Достижения в названных областях науки привели к появлению целой отрасли производства, работающей на здравоохранение, - медицинской биотехнологии. Зависимость состояния здоровья людей от качества среды и образа жизни уже не вызывает сомнений ни у практикующих врачей, ни у организаторов здравоохранения. Закономерным следствием этого является наблюдаемая в настоящее время экологизация медицины.

вей, приобретающих черты са

 

Бенджамин Франклин изображен на любимой многими людьми купюре номиналом в 100 долларов США.

 

Абу Наср аль-Фараби (870-950) изображен на купюре в 1 тенге, Казахстан. Ученый во многих областях, включая философию, языковедение, логику и др. Он также написал о природе науки и приводил доводы в пользу существования вакуума.

 

 

Нильс Бор (1885-1962) изображен на купюре в 500 крон, Дания. Бор был один из главных архитекторов квантовой теории. Он создал первую квантовую модель атома и играл главную роль в развитии современной интерпретации квантовой теории.

 

Кристиан Биркланд (1867-1917) изображен на купюре в 200 крон, Норвегия. Биркланд был пионером в изучении магнитного поля земли и северного сияния.

 

Пьер и Мария Кюри - купюра в 500 франков, Франция, 1994. Единственная в мире банкнота с изображением двух ученых физиков сразу.

 

Английская валюта 1993 года - купюра в 20 фунтов. Изображен Майкл Фарадей.

 

Карл Фредерик Гаусс (10 марок, Германия, 1993).

 

Николай Коперник - 1000 золотых, Польша, 1982.

 

Леонард Эйлер - 10 франков. Швейцарская купюра 1979-1990гг.

 

Мария Склодовская-Кюри - 20000 золотых, Польша.

 

Виктор Амбарцумян - 100 драм, Армения, 1998.

 

Кристиан Гюйгенс - 25 гульденов, Нидерланды, 1955.

 

Альберт Эйнштейн - 5 шекелей, Израиль.

 

Никола Тесла - 5 новых динаров, СР Югославия, 1994.

 

Никола Тесла - 500 динаров, Югославия, 1970.

 

Блез Паскаль - 500 франков, Франция, 1990.

 

Нильс Хенрик Абель - 500 крон, Норвегия, 1982.

 

Галилео Галилей - 2000 лир, Италия, 1973, 1976.

 

Гульельмо Маркони - 2000 лир, Италия, 1990.

 

Исаак Ньютон - 1 фунт, Англия, 1990.

 

Эрнест Резерфорд - 100 долларов, Новая Зеландия.

 

Эрвин Шредингер - 1000 шиллингов, Австрия, 1983.

мостоятельных наук.

 

 


Дата добавления: 2015-01-19; просмотров: 92; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Править] См. такжеЛауреаты | ВВЕДЕНИЕ. ВВЕДЕНИЕ. XVII век — самостоятельный этап в истории зарубежных литератур
lektsii.com - Лекции.Ком - 2014-2017 год. (0.168 сек.) Главная страница Случайная страница Контакты