Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Характеристика генных и хромосомных мутаций.

Читайте также:
  1. I. Этиологическая характеристика
  2. II. Общая характеристика искусства Древнего Египта, периодизация
  3. III, IV и VI пары черепных нервов. Функциональная характеристика нервов (их ядра, области, образование, топография, ветви, области иннервации).
  4. А Общая характеристика класса Turbellaria.
  5. А) Общая характеристика
  6. А) характеристика стационарного обслуживания
  7. Абсорберы, применяемые для очистки выбросов. Их характеристика и область применения.
  8. Адреномиметические средства прямого действия. Классификация. Механизм действия. Фармакологическая характеристика отдельных препаратов. Применение.
  9. Амплитудно-частотная характеристика, полоса пропускания и затухание
  10. Античная философия (общая характеристика).

Мутация (лат. mutatio — изменение) — стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) преобразование генотипа, происходящее под влиянием внешней или внутренней среды. Термин предложен Хуго де Фризом. Процесс возникновения мутаций получил название мутагенеза.

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные.

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

геномные;

хромосомные;

генные.

Геномные: — полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосом) и анеуплоидия (гетероплоидия) — изменение числа хромосом, не кратное гаплоидному набору (см. Инге-Вечтомов, 1989). В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.

При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом, т. н. Робертсоновская транслокация, которая является переходным вариантом от хромосомной мутации к геномной).

На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точечных мутациях.



Точечная мутация, или единственная замена оснований, — тип мутации в ДНК или РНК, для которой характерна замена одного азотистого основания другим. Термин также применяется и в отношении парных замен нуклеотидов. Термин точечная мутация включает так же инсерции и делеции одного или нескольких нуклеотидов. Выделяют несколько типов точечных мутаций.

Точечные мутации замены оснований. Поскольку в состав ДНК входят азотистые основания только двух типов — пурины и пиримидины, все точечные мутации с заменой оснований разделяют на два класса: транзиции и трансверсии. Транзиция — это мутация замены оснований, когда одно пуриновое основание замещается на другое пуриновое основание (аденин на гуанин или наоборот), либо пиримидиновое основание на другое пиримидиновое основание (тимин на цитозин или наоборот. Трансверсия — это мутация замены оснований, когда одно пуриновое основание замещается на пиримидиновое основание или наоборот). Транзиции происходят чаще, чем трансверсии.



Точечные мутации сдвига рамки чтения. Они делятся на делеции и инсерции. Делеции — это мутация сдвига рамки чтения, когда в молекуле ДНК выпадает один или несколько нуклеотидов. Инсерция — это мутация сдвига рамки чтения, когда в молекулу ДНК встраивается один или несколько нуклеотидов.

Встречаются также сложные мутации. Это такие изменения ДНК, когда один её участок заменяется участком другой длины и другого нуклеотидного состава.

Точечные мутации могут появляться напротив таких повреждений молекулы ДНК, которые способны останавливать синтез ДНК. Например, напротив циклобутановых пиримидиновых димеров. Такие мутации называются мишенными мутациями (от слова «мишень»). Циклобутановые пиримидиновые димеры вызывают как мишенные мутации замены оснований [6 9], так и мишенные мутации сдвига рамки.

Иногда точечные мутации образуются на, так называемых, неповрежденных участках ДНК, часто в небольшой окрестности от фотодимеров. Такие мутации называются немишенными мутациями замены оснований или немишенными мутациями сдвига рамки.

Точечные мутации образуются не всегда сразу же после воздействия мутагена. Иногда они появляются после десятков циклов репликаций. Это явление носит название задерживающихся мутаций. При нестабильности генома, главной причине образования злокачественных опухолей, резко возрастает количество немишенных и задерживающихся мутаций.

Возможны четыре генетических последствия точковых мутаций: 1) сохранение смысла кодона из-за вырожденности генетического кода (синонимическая замена нуклеотида), 2) изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация), 3) образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер — UAG, охр — UAA и опал — UGA (в соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов — например амбер-мутация), 4) обратная замена (стоп-кодона на смысловой кодон).

По влиянию на экспрессию генов мутации разделяют на две категории: мутации типа замен пар оснований и типа сдвига рамки считывания (frameshift). Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трём, что связано с триплетностью генетического кода.

Первичную мутацию иногда называют прямой мутацией, а мутацию, восстанавливающую исходную структуру гена, — обратной мутацией, или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны.

Почковые мутации (спорты) — стойкие соматические мутации происходящие в клетках точек роста растений. Приводят к клоновой изменчивости. При вегетативном размножении сохраняются. Многие сорта культурных растений являются почковыми мутациями.

 

 

64. Геномные мутации. Понятие о наследственных болезнях.
Геномные мутации - это мутации, которые приводят к добавлению либо утрате одной, нескольких или полного гаплоидного набора хромосом. Разные виды геномных мутаций называют гетероплоидией и полиплоидией .

Геномные мутации связаны с изменением числа хромосом. Например, у растений довольно часто обнаруживается явление полиплоидии - кратного изменения числа хромосом. У полиплоидных организмов гаплоидный набор хромосом n в клетках повторяется не 2, как у диплоидов, а значительно большее число раз (3n, 4п, 5п и до 12n). Полиплоидия - следствие нарушения хода митоза или мейоза: при разрушении веретена деления удвоившиеся хромосомы не расходятся, а остаются внутри неразделившейся клетки. В результате возникают гаметы с числом хромосом 2n. При слиянии такой гаметы с нормальной (n) потомок будет иметь тройной набор хромосом. Если геномная мутация происходит не в половых, а в соматических клетках, то в организме возникают клоны (линии) полиплоидных клеток. Нередко темпы деления этих клеток опережают темпы деления нормальных диплоидных клеток (2n). В этом случае быстро делящаяся линия полиплоидных клеток образует злокачественную опухоль. Если она не будет удалена или разрушена, то за счет быстрого деления полиплоидные клетки вытеснят нормальные. Так развиваются многие формы рака. Разрушение митотического веретена может быть вызвано радиацией, действием ряда химических веществ - мутагенов .

Геномные мутации в животном и растительном мире многообразны, но у человека обнаружены только 3 типа геномных мутаций: тетраплоидия , триплоидия и анеуплоидия . При этом из всех вариантов анеуплоидий встречаются только трисомии по аутосомам , полисомии по половым хромосомам (три-, тетра- и пентасомии), а из моносомий встречаются только моносомия-Х.

Наследственные заболевания — заболевания, возникновение и развитие которых связано с дефектами в наследственном аппарате клеток, передаваемыми по наследству через гаметы. Термин употребляется в отношении полиэтиологических заболеваний, в отличие от более узкой группы — генные болезни. Наследственные заболевания обусловлены нарушениями в процессах хранения, передачи и реализации генетической информации.

От наследственных заболеваний следует отличать врождённые заболевания, которые обусловлены внутриутробными повреждениями, вызванными, например, инфекцией (сифилис или токсоплазмоз) или воздействием иных повреждающих факторов на плод во время беременности. Наследственные болезни и врождённые заболевания представляют собой два частично перекрывающихся множества.

 


65. Репарация генетического материала.
Важное значение для ограничения неблагоприятных последствий генных мутаций имеют естественные антимутационные барьеры. Одним из них является парность хромосом в диплоидных наборах хромосом эука-риот, которая препятствует проявлению рецессивных мутаций у гетерозиготных особей. Главным антимутационным барьером рассматривается выработавшая в процессе эволюции способность к репарации наследственного материала. Её сущность - в устранении из наследственного материала клетки изменённого участка.
Различают 3 системы репарации генетического материала: эксцизионная репарация (репарация путём «вырезания»), фоторепарация и пострепликативная репарация.
Механизм эксцизионной репарации заключается в ферментативном разрушении изменённого участка молекулы ДНК с последующим восстановлением на этом отрезке нормальной последовательности нуклеотидов. Такой механизм включает следующие этапы: а) разрыв спирали ДНК у места повреждения при участии эндонуклеаз; б) удаление поврежденного участка с запасом в обе стороны с помощью эндонуклеаз; в) синтез при участии ДНК-полимеразы на месте дефекта нормального участка ДНК; г) «сшивание» последнего с образовавав-шимися концами спирали ДНК при помощи фермента ДНК-лигазы (восстановление непрерывности ДНК).
Например, под действием УФ-лучей у человека нарушается комплементарность пар нуклеотидов в двойной спирали ДНК (появляются пары Т-Т, Ц-Ц и т.п.). Они устраняются вышеописанным способом. Однако у различных индивидуумов наблюдаются генетические различия в активности репаративньгх ферментов и надёжности функционирования механизма ферментативного разрушения изменённого участка молекулы ДНК в целом. У ряда людей наблюдается изменение ДНК и, как следствие, возникновение заболевания «пигментная ксеродерма». В клетках эукариот обнаружены два вида репарации «путём вырезания»: 1) более продолжительная репарация (длительность процесса - от 1 до 24 часов), восстанавливающая большой фрагмент ДНК (около 100 нуклеотидов); 2) быстродействующая репарация (продолжается от 5 минут до 2 часов), восстанавливающая 3-4 нуклеотида.
Пострепликативная репарация «включается» тогда, когда эксци-зионная репарация «не справляется» с устранением всех повреждений, возникших в ДНК до её репликации. При репликации во второй спирали ДНК возникают бреши - однонитевые пробелы, соответствующие изменённым нуклеотидам первой спирали. Бреши заполняются участками цепи с нормальной последовательностью нуклеотидов уже в ходе пострешгикативной репарации при участии ДНК-полимеразы.
Фоторепарация заключается в расщеплении ферментом (дезоксирибо-пиримидинфотолиазой), активируемым видимым светом, циклобутановых димеров, возникающих в ДНК под действием ультрафиолетового излучения.
Механизмам репарации свойственны нарушения и «сбои», которые приводят к повышению чистоты мутаций. Известны специфические мутации, блокирующие механизмы репарации и вызывающие наследственные заболевания (пигментная ксеродерма и др.).
Биологическое значение репарации ДНК заключается в резком снижении частоты мутаций, большинство которых оказываются летальными и полулетальными или же снижающими жизнеспособность организмов, вызывающими аномалии и обусловливающими тератогенез. Благодаря репарации ДНК повышается устойчивость генотипа организма к повреждающим агентам (мутагенам).

 

 


66. Доказательства эволюции живой природы.
Доказательства эволюции — научные данные и концепции, подтверждающие происхождение всех живых существ на Земле от общего предка. Благодаря этим доказательствам основы эволюционного учения получили признание в научном сообществе, а ведущей системой представлений о процессах видообразования стала синтетическая теория эволюции.

Эволюционные процессы наблюдаются как в естественных, так и лабораторных условиях. Известны случаи образования новых видов. Описаны также случаи развития новых свойств посредством случайных мутаций. Факт эволюции на внутривидовом уровне доказан экспериментально, а процессы видообразования непосредственно наблюдались в природе.

Чтобы получить сведения об эволюционной истории жизни, палеонтологи анализируют ископаемые останки организмов. Степень родства между современными видами можно установить, сравнивая их строение, геномы, развитие эмбрионов (эмбриогенез). Дополнительный источник информации об эволюции — закономерности географического распространения животных и растений, которые изучает биогеография. Все эти данные укладываются в единую картину — эволюционное дерево жизни.

ДОКАЗАТЕЛЬСТВА ЭВОЛЮЦИИ
1. Биохимические доказательства эволюции.
1.Все организмы, будь то вирусы, бактерии, растения, животные или грибы, имеют удивительно близкий элементарный химический состав.
2.У всех у них особо важную роль в жизненных явлениях играют белки и нуклеиновые кислоты, которые построены всегда по единому принципу и из сходных компонентов. Высокая степень сходства обнаруживается не только в строении биологических молекул, но и в способе их функционирования. Принципы генетического кодирования, биосинтеза белков и нуклеиновых кислот едины для всего живого.
3.У подавляющего большинства организмов в качестве молекул-аккумуляторов энергии используется АТФ, одинаковы также механизмы расщепления сахаров и основной энергетический цикл клетки.
4.Большинство организмов имеют клеточное строение.
2.Эмбриологические доказательства эволюции.
Отечественные и зарубежные ученные обнаружили и глубоко изучили сходства начальных стадий эмбрионального развития животных. Все многоклеточные животные проходят в ходе индивидуального развития стадии бластулы и гаструлы. С особой отчетливостью выступает сходство эмбрионального стадий в пределах отдельных типов или классов. Например, у всех наземных позвоночных, так же и у рыб, обнаруживается закладка жаберных дуг, хотя эти образования не имеют функционального значения у взрослых организмов. Подобное сходство эмбриональных стадий объясняется единством происхождения всех живых организмов.
3.Морфологические доказательства эволюции.
Особую ценность для доказательства единства происхождения органического мира представляют формы, сочетающие в себе признаки нескольких крупных систематических единиц. Существование таких промежуточных форм указывает на то, что в прежние геологические эпохи жили организмы, являющиеся родоначальниками нескольких систематических групп. Наглядным примером этого может служить одноклеточный организм эвглена зеленая. Она одновременно имеет признаки, типичные для растений и для простейших животных.
Строение передних конечностей некоторых позвоночных несмотря на выполнение этими органами совершенно разных функций, в принципиальных чертах строение сходны. Некоторые кости в скелете конечностей могут отсутствовать, другие - срастаться, относительные размеры костей могут меняться, но их гомология совершенно очевидна. Гомологичными называются такие органы, которые развиваются из одинаковых эмбриональных зачатков сходным образом.
Некоторые органы или их части не функционируют у взрослых животных и являются для них лишними - это так называемые рудиментарные органыили рудименты. Наличие рудиментов, так же как и гомологичных органов, тоже свидетельство общности происхождения.
4. Палеонтологические доказательства эволюции.
Палеонтология указывает на причины эволюционных преобразований. В этом отношении интересна эволюция лошадей. Изменение климата на Земле повлекло за собой изменение конечностей лошади. Параллельно изменению конечностей происходило преобразование всего организма: увеличение размеров тела, изменения формы черепа и усложнение строения зубов, возникновения свойственного травоядным млекопитающим пищеварительного тракта и многое другое.
В результате изменения внешних условий под влиянием естественного отбора произошло постепенное превращение мелких пятипалых всеядных животных в крупных травоядных. Богатейший палеонтологический материал - одно из наиболее убедительных доказательств эволюционного процесса, длящегося на нашей планете уже более 3 миллиардов лет.
5. Биогеографические доказательства эволюции.
Ярким свидетельством происшедших и происходящих эволюционных изменений является распространение животных и растений по поверхности нашей планеты. Сравнение животного и растительного мира разных зон дает богатейший научный материал для доказательства эволюционного процесса. Фауна и флора Палеоарктической и Неоарктической областей имеют много общего. Это объясняется тем, что в пролом между названными областями существовал сухопутный мост - Берингов перешеек. Другие области имеют мало общих черт.
Таким образом, распределение видов животных и растений по поверхности планеты и их группировка в биографические зоны отражает процесс исторического развития Земли и эволюции живого.
Островные фауна и флора.
Для понимания эволюционного процесса интерес представляют флора и фауна островов. Состав их флоры и фауны полностью зависит от истории происхождения островов. Огромное количество разнообразных биографических фактов указывает на то, что особенности распределения живых существ на планете тесно связаны с преобразованием земной коры и с эволюционными изменениями видов.

 

 

67. Додарвиновский период становления эволюционной идеи. Эволюционная концепция Ж.Б. Ламарка.
В основе эволюционного учения лежит признание исторического развития живого. Под эволюцией понимают необратимый постепенный процесс исторических изменений живого. Первые представления об историческом изменении живых организмов уходят корнями в глубь веков. За 2000 лет до н.э. в Китае существовали учения, допускающие превращения одних организмов в другие. Представления, хотя и довольно наивные, о развитии живого можно найти в трудах античных авторов Древней Греции. Так, Анаксимандр (610-546 гг. до н.э.) полагал, что человек произошёл от рыб. Эмпедокл (483-423 гг. до н.э.) высказал идею о закономерном развитии живой природы, о выживании тех, кто наиболее целесообразно устроен. В сочинениях Аристотеля (384-322 гг. до н.э.) природа рассмотрена в соответствии с градациями совершенства.

Идеям об изменяемости живых существ противостояли господствовавшие много веков и всегда поддерживаемые церковью представления о возникновении живого в результате акта творения, о постоянстве и неизменности всего существующего, которые впоследствии объединило идеалистическое течение - креационизм. Идеи креационизма господствовали в период средневековья, и даже эпоха Возрождения, способствовавшая в целом развитию естествознания, характеризовалась метафизическими воззрениями и телеологическими объяснениями изначальной целесообразности всего созданного высшим существом. Убеждённым креационистом был также создатель классической системы живого мира - шведский натуралист XVIII века Карл Линней (1707-1778), утверждавший, что «виды в высшей степени постоянны».

Во второй половине XVIII века в естествознании распространились идеи трансформизма. Одним из крупных трансформистов был Ж. Бюффон (1707-1788), который в своей «Естественной истории» высказал смелые идеи об образовании Земли в результате космической катастрофы, о зарождении «крупинок живого вещества» под влиянием тепла, о появлении немногих видов, их видоизменении в многочисленные виды под влиянием факторов среды. Идеи, близкие к взглядам Ж. Бюффона, изложил стихами в поэме «Храм природы» Эразм Дарвин (1731-1803), дед Чарльза Дарвина. В развитие трансформизма внесли вклад Д.Дидро, Э. Жоффруа Сент-Илер, К.Ф. Рулье и др.

Трансформизм, как и первые эволюционные представления в целом, получил развитие и распространение в России благодаря усилиям

М.В. Ломоносова, А.Н. Радищева, К.Ф. Вольфа, А.А. Каверзнева. По представлениям М.В. Ломоносова, мир имеет «великую древность», поверхность Земли, растения и животные постоянно изменялись.

А.Н. Радищев (1749-180.8) построил основанную на материалистических представлениях «лестницу веществ», отражавшую усложнение природных объектов, начиная от минералов и заканчивая человеком. Ступени лестницы соответствуют значительным этапам развития природы - превращению неорганических веществ в органические, возникновению у живых существ новых качеств, в том числе ощущения, мышления и т.п.

А.А. Каверзнев в диссертации «О перерождении животных» обосновал предположение, что домашние животные произошли от диких предков, а все животные произошли от одного ствола. Объясняя факт изменяемости животных, А.А. Каверзнев придавал большое значение прямому влиянию на организмы факторов среды - климата, пищи, температуры.

Создателем первой аргументированной эволюционной концепции является Жан Батист Ламарк (1744-1829). Его концепция, изложенная в основном труде «Философия зоологии» (1809), хотя и носила умозрительный характер, но отражала первую в истории биологии попытку поиска материального фактора изменения живых организмов. В качестве такового он указал изменения внешней среды, которые прямо (у растений) или опосредованно (через нервную систему у животных) вызывают преобразования живых существ. К убеждению об изменяемости видов Ж.Б. Ламарк пришёл на основании длительных исследований флоры и фауны. Он обнаружил переходные формы между видами, в чем увидел доказательство непостоянства видов. Новые виды живых организмов возникают, по его мнению, в результате плавного преобразования старых формадекватно изменениям среды. Результатом прогрессивных изменений, усложнения форм жизни Ж.Б. Ламарк рассматривал градацию живых тел. В соответствии с ней он расположил живые существа по ступеням в зависимости от степени сложности их организации.

Прогрессивную эволюцию как появление форм более сложных и совершенных Ж.Б. Ламарк объяснял «законом градаций» - стремлением живых существ усложнять свою структуру. Раз возникнув, приспособительные изменения далее, по его мнению, способны передаваться по наследству (концепция «наследования благоприобретенных признаков»). Так возникла система взглядов на эволюционный процесс, названная ламаркизмом.

Причинами эволюции Ж.Б. Ламарк считал стремление всех живых организмов к прогрессу, развитию от простого к сложному, а также целесообразные изменения организмов, направленные на приспособление к внешним условиям. Изменения эти, как утверждал Ж. Б. Ламарк, вызываются прямым влиянием внешней среды, упражнением органов и наследованием приобретенных при жизни признаков. По мнению Ж.Б. Ламар-ка, влияние внешних условий на животных, имеющих центральную нервную систему, осуществляется косвенным путем через первичное изменение потребностей и привычек, которое вызывает новые формы деятельности и, как следствие, интенсивное упражнение одних органов и относительную бездеятельность других. Упражнение органов стимулирует их развитие и увеличение, а неупражнение ведет к недоразвитию, уменьшению и нередко к исчезновению. Результатом этого служат изменения формы и структуры организма, которые передаются по наследству и таким путем закрепляются в потомстве. Зависимость состояния органов от их упражнения и сохранение изменений в потомстве известны как два закона Ж.Б. Ламарка. Первый закон утверждает, что у всякого животного более частое и более длительное употребление органов приводит к их увеличению и, наоборот, неупотребление ведет к уменьшению или исчезновению органов. Второй закон гласит: все, что приобретено организмами под влияниями внешних условий, в результате упражнения или утрачено из-за неупотребления, наследуется потомками. Так, длинную шею у жирафов Ж.Б. Ламарк объяснял тем, что они её постоянно вытягивают, стремясь дотянуться до всё более высоко расположенных в кроне деревьев листьев (рис. 130). Такими постоянными упражнениями можно достичь некоторого удлинения шеи, но эти изменения не передаются потомству. Поскольку упражнение органов не отражается на строении половых клеток, а наследуются только обусловленные мутациями признаки, в настоящее время законы Ламарка имеют лишь исторический интерес. Их прогрессивное значение для своей эпохи заключается в признании изменяемости видов и в попытке поиска материального фактора (изменяющихся условий внешней среды) для объяснения исторических изменений организмов, что в свое время послужило отправной точкой для дарвинизма.

 

Вклад Ж.Б. Ламарка в эволюционное учение в целом огромен. Он создал первую эволюционную концепцию в период господства метафизических и креационистских представлений, провозгласив принцип изменяемости видов. Его концепция в своей основе материалистическая, хотя в признании такого свойства организмов как тенденция к усовершенствованию проявился идеализм, сделаны уступки господствовавшему в то время идеалистическому мировоззрению. Ошибочным было также отрицание им реальности существования видов. Современники не приняли эволюционного учения Ж.Б. Ламарка, в чём сыграли несомненную роль неубедительность его аргументаций и умозрительность суждений.

Ещё до выхода в свет основного труда Ч. Дарвина известный русский учёный К.М. Бэр (1792-1876) придерживался взглядов об изменяемости видов. Его закон «зародышевого сходства», утверждение о сходстве индивидуального развития организмов, по сути, предвосхитили «биогенетический закон», сформулированный позже Э. Геккелем и Ф. Мюллером.

Профессор Московского университета К.Ф. Рулье (1814-1858) на основании палеонтологических, сравнительно-анатомических и эмбриологических исследований самостоятельно пришёл к идее эволюции. В работе «О животных Московской губернии» он писал, что развитие животных обусловливается изменяющейся внешней средой. К.Ф. Рулье утверждал, что природа многократно изменялась, растения и животные постепенно развивались и усложнялись, и это усложнение увенчалось появлением человека.

 

68. Вклад Ч. Дарвина в развитие эволюционного учения.
Новый этап в развитии эволюционной теории наступил в 1859 году в результате публикации основополагающей работы Чарльза Дарвина «Происхождение видов путём естественного отбора или сохранение благоприятствуемых пород в борьбе за жизнь». Основной движущей силой эволюции по Дарвину является естественный отбор. Отбор, действуя на особей, позволяет выживать и оставлять потомство тем организмам, которые лучше приспособлены для жизни в данном окружении. Действие отбора приводит к распадению видов на части — дочерние виды, которые, в свою очередь, со временем расходятся до родов, семейств и всех более крупных таксонов.

С присущей ему честностью Дарвин указал на тех, кто непосредственно подтолкнули его к написанию и изданию эволюционного учения (видимо, Дарвин не слишком интересовался историей науки, так как в первом издании «Происхождения видов» он не упоминал о своих непосредственных предшественниках: Уэллсе, Мэттью, Блите). Прямое влияние на Дарвина в процессе создания труда оказали Лайель и в меньшей степени Томас Мальтус (1766—1834), с его геометрической прогрессией численности из демографического труда «Опыт о законе народонаселения» (1798). И, можно сказать, Дарвина «заставил» опубликовать свой труд молодой английский зоолог и биогеограф Альфред Уоллес (1823—1913), отправив ему рукопись, в которой независимо от Дарвина он излагает идеи теории естественного отбора. При этом Уоллес знал, что Дарвин трудится над эволюционным учением, ибо последний сам писал ему об этом в письме от 1 мая 1857 года: «Нынешним летом исполнится 20 лет (!) с тех пор, как я завёл свою первую записную книжку по вопросу о том, чем и каким способом разнятся друг от друга виды и разновидности. Теперь я подготовляю мой труд к печати… но не предполагаю печатать его раньше, чем через два года… Право, невозможно (в рамках письма) изложить мои взгляды на причины и способы изменений в естественном состоянии; но я шаг за шагом пришел к ясной и отчётливой идее — верной или ложной, об этом должны судить другие; ибо — увы! — самая непоколебимая уверенность автора теории в своей правоте ни в какой мере не является залогом её истинности!» Здесь видно здравомыслие Дарвина, а также и джентльменское отношение двух учёных друг к другу, которое ясно прослеживается при анализе переписки между ними. Дарвин, получив статью 18 июня 1858 года, хотел представить её в печать, умолчав о своей работе, и только по настоятельным уговорам друзей написал «краткое извлечение» из своего труда и эти две работы представил на суд Линнеевского общества.

Дарвин в полной мере воспринял от Лайеля идею постепенности развития и, можно сказать, был униформистом. Может возникнуть вопрос: если всё было известно до Дарвина, то в чём же его заслуга, почему именно его работа вызвала такой резонанс? Но Дарвин сделал то, что не смогли сделать его предшественники. Во первых, он дал своей работе очень актуальное название, бывшее «у всех на устах». Общественность испытывала жгучий интерес именно к «Происхождению видов путём естественного отбора или сохранению благоприятствуемых рас в борьбе за жизнь». Трудно припомнить другую книгу в истории мирового естествознания, в названии которой столь же чётко была бы отражена её суть. Может быть, Дарвину и попадались на глаза титульные листы или названия работ его предшественников, но просто не возникло желания ознакомиться с ними. Мы можем только гадать, как бы отреагировала общественность, догадайся Мэттью выпустить свои эволюционные взгляды под заглавием «Возможность изменения видов растений во времени благодаря выживанию (отбору) наиболее приспособленных». Но, как мы знаем «Строевой корабельный лес…» не привлёк к себе внимания.

Во-вторых, и это самое главное, Дарвин смог объяснить современникам причины изменяемости видов на основе проведённых им наблюдений. Он отверг, как несостоятельное, представление о «упражнении» или «неупражнении» органов и обратился к фактам выведения новых пород животных и сортов растений людьми — к искусственному отбору. Он показал, что неопределенная изменчивость организмов (мутации) передаются по наследству и могут стать началом новой породы или сорта, если то будет полезно человеку. Перенеся эти данные на дикие виды, Дарвин отмечал, что в природе могут сохраняться лишь те изменения, которые выгодны виду для успешной конкуренции с другими, и говорил о борьбе за существование и естественном отборе, которому приписывал важную, но не единственную роль движителя эволюции. Дарвин не только дал теоретические выкладки естественного отбора, но и показал на фактическом материале эволюцию видов в пространстве, при географической изоляции (вьюрки) и с позиций строгой логики объяснил механизмы дивергентной эволюции. Также он ознакомил общественность с ископаемыми формами гигантских ленивцев и броненосцев, что могло рассматриваться как эволюция во времени. Дарвин также допускал возможность длительного сохранения некой усреднённой нормы вида в процессе эволюции путем элиминации любых отклоняющихся вариантов (например, выжившие после бури воробьи имели среднюю длину крыла), что позднее было названо стасигенезом. Дарвин смог всем доказать реальность изменчивости видов в природе, поэтому благодаря его работе сошли на нет идеи о строгом постоянстве видов. Статикам и фиксистам было бессмысленным далее упорствовать в своих позициях.

 

 

69. Синтетическая теория эволюции. Понятие о факторах эволюции.
Синтетическая теория эволюции
(также современный эволюционный синтез) — современная эволюционная теория, которая является синтезом различных дисциплин, прежде всего, генетики и дарвинизма. СТЭ также опирается на палеонтологию, систематику, молекулярную биологию и другие.

В 1930—1940-е годы быстро произошел широкий синтез генетики и дарвинизма. Генетические идеи проникли в систематику, палеонтологию, эмбриологию, биогеографию. Термин «современный» или «эволюционный синтез» происходит из названия книги Дж. Хаксли «Evolution: The Modern synthesis» (1942). Выражение «синтетическая теория эволюции» в точном приложении к данной теории впервые было использовано Дж. Симпсоном в 1949 году.

Авторы синтетической теории расходились во мнениях по ряду фундаментальных проблем и работали в разных областях биологии, но они были практически единодушны в трактовке следующих основных положений:

элементарной единицей эволюции считается локальная популяция;

материалом для эволюции являются мутационная и рекомбинационная изменчивость;

естественный отбор рассматривается как главная причина развития адаптаций, видообразования и происхождения надвидовых таксонов;

дрейф генов и принцип основателя выступают причинами формирования нейтральных признаков;

вид есть система популяций, репродуктивно изолированных от популяций других видов, и каждый вид экологически обособлен;

видообразование заключается в возникновении генетических изолирующих механизмов и осуществляется преимущественно в условиях географической изоляции.

Таким образом, синтетическую теорию эволюции можно охарактеризовать как теорию органической эволюции путем естественного отбора признаков, детерминированных генетически.

Активность американских создателей СТЭ была столь высока, что они быстро создали международное общество по изучению эволюции, которое в 1946 стало учредителем журнала «Evolution». Журнал «American Naturalist» вновь вернулся к публикации работ по эволюционной тематике, делая акцент на синтезе генетики, экспериментальной и полевой биологии. В результате многочисленных и самых разнообразных исследований основные положения СТЭ прошли не только успешную проверку, но и видоизменялись, дополнялись новыми идеями.

В 1942 немецко-американский орнитолог и зоогеограф Э. Майр издал книгу «Систематика и происхождение видов», в которой была последовательно развита концепция политипического вида и генетико-географическая модель видообразования. Майр предложил принцип основателя, который в окончательной форме был им сформулирован в 1954. Если дрейф генов, как правило, дает причинное объяснение формированию нейтральных признаков во временном измерении, то принцип основателя в пространственном.

После публикации трудов Добржанского и Майра систематики получили генетическое объяснение тому, в чём они давно уже были уверены: подвиды и близкородственные виды различаются в значительной степени по адаптивно-нейтральным признакам.

Ни один из трудов по СТЭ не может сравниться с упомянутой книгой английского экспериментального биолога и натуралиста Дж. Хаксли «Evolution: The Modern synthesis» (1942 год). Труд Хаксли по объему анализируемого материала и широте проблематики превосходит даже книгу самого Дарвина. Хаксли на протяжении многих лет держал в уме все направления в развитии эволюционной мысли, внимательно следил за развитием родственных наук и имел личный опыт генетика-экспериментатора. Видный историк биологии Провин так оценил труд Хаксли: «„Эволюция. Современный синтез“ была наиболее всесторонней по теме и документам, чем другие работы на эту тему. Книги Холдейна и Добржанского были написаны главным образом для генетиков, Майра для систематиков и Симпсона для палеонтологов. Книга Хаксли стала доминантной силой в эволюционном синтезе».

По объёму книга Хаксли не имела себе равных (645 страниц). Но самое интересное состоит в том, что все основные идеи, изложенные в книге, были очень ясно выписаны Хаксли на 20 страницах ещё в 1936, когда он послал в адрес Британской ассоциации содействия науки статью под названием «Natural selection and evolutionary progress». В этом аспекте ни одна из публикаций по эволюционной теории, вышедшая в 1930-40-х годах, не может сравниться со статьей Хаксли. Хорошо чувствуя дух времени, Хаксли писал: «В настоящее время биология находится в фазе синтеза. До этого времени новые дисциплины работали в изоляции. Сейчас проявилась тенденция к унификации, которая является более плодотворной, чем старые односторонние взгляды на эволюцию» (1936). Ещё в трудах 1920-х годов Хаксли показал, что наследование приобретенных признаков невозможно; естественный отбор действует как фактор эволюции и как фактор стабилизации популяций и видов (эволюционный стазис); естественный отбор действует на малые и крупные мутации; географическая изоляция — важнейшее условие видообразования. Кажущаяся цель в эволюции объясняется мутациями и естественным отбором.

Основные положения статьи Хаксли 1936 года можно очень кратко изложить в такой форме:

Мутации и естественный отбор — комплементарные процессы, которые по отдельности не способны создать направленные эволюционные изменения.

Отбор в природных популяциях чаще всего действует не на отдельные гены, а на комплексы генов. Мутации не могут быть полезными или вредными, но их селективная ценность варьирует в разных средах. Механизм действия отбора зависит от внешней и генотипической среды, а вектор его действия от фенотипического проявления мутаций.

Репродуктивная изоляция — главный критерий, свидетельствующий о завершении видообразования. Видообразование может быть непрерывным и линейным, непрерывным и дивергентным, резким и конвергентным.

Градуализм и панадаптационизм не являются универсальными характеристиками эволюционного процесса. Большинству наземных растений свойственна именно прерывистость и резкое образование новых видов. Широко распространённые виды эволюционируют градуально, а малые изоляты — прерывисто и не всегда адаптивно. В основе прерывистого видообразования лежат специфические генетические механизмы (гибридизация, полиплоидия, хромосомные аберрации). Виды и надвидовые таксоны, как правило, различаются по адаптивно-нейтральным признакам. Главные направления эволюционного процесса (прогресс, специализация) — компромисс между адаптивностью и нейтральностью.

В природных популяциях широко распространены потенциально преадаптивные мутации. Этот тип мутаций играет важнейшую роль в макроэволюции, особенно в периоды резких средовых перемен.

Концепция скоростей действия генов объясняет эволюционную роль гетерохроний и аллометрии. Синтез проблем генетики с концепцией рекапитуляции ведет к объяснению быстрой эволюции видов, находящихся в тупиках специализации. Через неотению происходит «омоложение» таксона, и он приобретает новые темпы эволюции. Анализ соотношения онто- и филогенеза дает возможность обнаружить эпигенетические механизмы направленности эволюции.

В процессе прогрессивной эволюции отбор действует в сторону улучшения организации. Главным результатом эволюции было появление человека. С возникновением человека большая биологическая эволюция перерастает в психосоциальную. Эволюционная теория входит в число наук, изучающих становление и развитие человеческого общества. Она создает фундамент для понимания природы человека и его будущего.

Широкий синтез данных сравнительной анатомии, эмбриологии, биогеографии, палеонтологии с принципами генетики был осуществлен в трудах И. И. Шмальгаузена (1939), А. Л. Тахтаджяна (1943), Дж. Симпсона (1944), Б. Ренша (1947). Из этих исследований выросла теория макроэволюции. Только книга Симпсона была опубликована на английском языке и в период широкой экспансии американской биологии, чаще всего она одна упоминается среди основополагающих трудов.

И. И. Шмальгаузен был учеником А. Н. Северцова, однако уже в 20-е годы определился его самостоятельный путь. Он изучал количественные закономерности роста, генетику проявления признаков, саму генетику. Одним из первых Шмальгаузен осуществил синтез генетики и дарвинизма. Из огромного наследия И. И. Шмальгаузена особо выделяется его монография «Пути и закономерности эволюционного процесса» (1939). Впервые в истории науки он сформулировал принцип единства механизмов микро- и макроэволюции. Этот тезис не просто постулировался, а прямо следовал из его теории стабилизирующего отбора, который включает популяционно-генетические и макроэволюционные компоненты (автономизация онтогенеза) в ходе прогрессивной эволюции.

А. Л. Тахтаджян в монографической статье: «Соотношения онтогенеза и филогенеза у высших растений» (1943) не только активно включил ботанику в орбиту эволюционного синтеза, но фактически построил оригинальную онтогенетическую модель макроэволюции («мягкий сальтационизм»). Модель Тахтаджяна на ботаническом материале развивала многие замечательные идеи А. Н. Северцова, особенно теорию архаллаксисов (резкое, внезапное изменение органа на самых ранних стадиях его морфогенеза, приводящее к изменениям всего хода онтогенеза). Труднейшая проблема макроэволюции — разрывы между крупными таксонами, объяснялась Тахтаджяном ролью неотении в их происхождении. Неотения играла важную роль в происхождении многих высших таксономических групп, в том числе и цветковых. Травянистые растения произошли от древесных путем ярусной неотении.

Ещё в 1931 году С. Райтом была предложена концепция случайного дрейфа генов, которая говорит об абсолютно случайном формировании генофонда дема как малой выборки из генофонда всей популяции. Изначально дрейф генов оказался тем самым аргументом, которого очень долго не хватало для того, чтобы объяснить происхождение неадаптивных различий между таксонами. Поэтому идея дрейфа сразу стала близка широкому кругу биологов. Дж. Хаксли назвал дрейф «эффектом Райта» и считал его «наиболее важным из недавних таксономических открытий». Джордж Симпсон (1948) основал на дрейфе свою гипотезу квантовой эволюции, согласно которой популяция не может самостоятельно выйти из зоны притяжения адаптивного пика. Поэтому, чтобы попасть в неустойчивое промежуточное состояние, необходимо случайное, независящее от отбора генетическое событие — дрейф генов.

Однако вскоре энтузиазм по отношению к дрейфу генов ослаб. Причина интуитивно ясна: любое полностью случайное событие неповторимо и непроверяемо. Широкое цитирование работ С. Райта в современных эволюционных учебниках, излагающих исключительно синтетическую концепцию, нельзя объяснить иначе как стремлением осветить все разнообразие взглядов на эволюцию, игнорируя родство и различие между этими взглядами.

Экология популяций и сообществ вошла в эволюционную теорию благодаря синтезу закона Гаузе и генетико-географической модели видообразования. Репродуктивная изоляция была дополнена экологической нишей в качестве важнейшего критерия вида. При этом нишевый подход к виду и видообразованию оказался более общим, чем чисто генетический, так как он применим и к видам, не имеющим полового процесса.

Вхождение экологии в эволюционный синтез представляло собой заключительный этап формирования теории. С этого момента начался период использования СТЭ в практике систематики, генетики, селекции, продолжавшийся до развития молекулярной биологии и биохимической генетики.

С развитием новейших наук СТЭ начала вновь расширяться и модифицироваться. Быть может, важнейшим вкладом молекулярной генетики в теорию эволюции было разделение генов на регуляторные и структурные (модель Р. Бриттена и Э. Дэвидсона, 1971). Именно регуляторные гены контролируют возникновение репродуктивных изолирующих механизмов, которые изменяются независимо от энзимных генов и вызывают быстрые изменения (в масштабах геологического времени) на морфологическом и физиологическом уровнях.

Идея случайного изменения генных частот нашла применение в теории нейтральности (Мотоо Кимура, 1985), которая выходит далеко за рамки традиционной синтетической теории, будучи созданной на фундаменте не классической, а молекулярной генетики. Нейтрализм основан на совершенно естественном положении: далеко не все мутации (изменения нуклеотидного ряда ДНК) приводят к изменению последовательности аминокислот в соответствующей молекуле белка. Те замены аминокислот, которые состоялись, не обязательно вызывают изменение формы белковой молекулы, а когда такое изменение все же происходит, оно не обязательно изменяет характер активности белка. Следовательно, многие мутантные гены выполняют те же функции, что и нормальные гены, отчего отбор по отношению к ним ведет себя полностью нейтрально. По этой причине исчезновение и закрепление мутаций в генофонде зависят чисто от случая: большинство их пропадает вскоре после появления, меньшинство остается и может существовать довольно долго. В результате отбору, оценивающему фенотипы, «по существу безразлично, какие генетические механизмы определяют развитие данной формы и соответствующей функции, характер молекулярной эволюции совершенно отличен от характера фенотипической эволюции» (Кимура, 1985).

Последнее высказывание, отражающее суть нейтрализма, никак не согласуется с идеологией синтетической теории эволюции, восходящей к концепции зародышевой плазмы А. Вейсмана, с которой началось развитие корпускулярной теории наследственности. Согласно взглядам Вейсмана, все факторы развития и роста находятся в половых клетках; соответственно, чтобы изменить организм, необходимо и достаточно изменить зародышевую плазму, то есть гены. В итоге теория нейтральности наследует концепцию генетического дрейфа, порожденную неодарвинизмом, но впоследствии им оставленную.

Появились новейшие теоретические разработки, позволившие еще больше приблизить СТЭ к реально существующим фактам и явлениям, которые ее первоначальная версия не могла объяснить. Достигнутые эволюционной биологией на настоящий момент рубежи отличаются от представленных ранее постулатов СТЭ:

Постулат о популяции как наименьшей эволюирующей единице остается в силе. Однако огромное количество организмов без полового процесса остается за рамками этого определения популяции, и в этом видится значительная неполнота синтетической теории эволюции.

Естественный отбор не является единственным движителем эволюции.

Эволюция далеко не всегда носит дивергентный характер.

Эволюция не обязательно идет постепенно. Не исключено, что в отдельных случаях внезапный характер могут иметь и отдельные макроэволюционные события.

Макроэволюция может идти как через микроэволюции, так и своими путями.

Сознавая недостаточность репродуктивного критерия вида, биологи все еще не могут предложить универсального определения вида как для форм с половым процессом, так и для агамных форм.

Случайный характер мутационной изменчивости не противоречит возможности существования определенной канализированности путей эволюции, возникающей как результат прошлой истории вида. Должна стать широко известной и теория номогенеза или эволюция на основе закономерностей, выдвинутая в 1922—1923 гг. Л.С. Бергом. Его дочь Р. Л. Берг рассмотрела проблему случайности и закономерности в эволюции и пришла к заключению, что «эволюция совершается по разрешенным путям» (Р. Л. Берг, «Генетика и эволюция», избранные труды, Новосибирск, Наука, 1993, стр.283).

Наряду с монофилией признается широкое распространение парафилии.

Реальностью является и некоторая степень предсказуемости, возможность прогнозирования общих направлений эволюции (положения новейшей биологии взяты из: Николай Николаевич Воронцов, 1999, стр. 322 и 392—393).

Уверенно можно сказать, что развитие СТЭ будет продолжаться с появлением новых открытий в области эволюции.

70. Особенности естественного отбора как направляющего фактора эволюции.
Чарльз Дарвин полагал естественный отбор основной движущей силой эволюции, в современной синтетической теории эволюции он также является основным регулятором развития и адаптации популяций, механизмом возникновения видов и надвидовых таксонов, хотя накопление в конце XIX — начале XX века сведений по генетике, в частности обнаружение дискретного характера наследования фенотипических признаков, привело к тому, что некоторые исследователи стали отрицать важность естественного отбора, и в качестве альтернативы предлагали концепции, базирующиеся на оценке фактора мутации генотипа как чрезвычайно важного. Авторы таких теорий постулировали не постепенный, а очень быстрый (в течение нескольких поколений) скачкообразный характер эволюции (мутационизм Гуго де Фриза, сальтационизм Рихарда Гольдшмитда и другие, менее известные концепции). Открытие известных корреляций среди признаков родственных видов (закон гомологических рядов) Н. И. Вавилова подтолкнуло некоторых исследователей к формулировке очередных «антидарвиновских» гипотез об эволюции, таких как номогенез, батмогенез, автогенез, онтрогенез и прочие. В 1920—1940-е годы в эволюционной биологии, у тех кто отвергнул идею Дарвина об эволюции путём естественного отбора, (иногда теории, в которых уделялось большое значение естественному отбору называли «селекционистскими») возродился интерес к этой теории благодаря пересмотру классического дарвинизма в свете относительно молодой науки генетики. Разработанная в результате этого синтетическая теория эволюции, часто некорректно называемая неодарвинизмом, помимо прочего, опирается на количественный анализ частоты аллелей в популяциях, изменяющейся под влиянием естественного отбора. Ведутся споры, где люди с радикальным подходом, в качестве аргумента против синтетической теории эволюции а также роли естественного отбора утверждают, что «открытия последних десятилетий в различных областях научного знания — от молекулярной биологии с её теорией нейтральных мутаций Мотоо Кимуры и палеонтологии с её теорией прерывистого равновесия Стивена Джея Гоулда и Найлза Элдриджа (в которой вид понимается как относительно статическая фаза эволюционного процесса) до математики с её теорией бифуркаций и фазовых переходов — свидетельствуют о недостаточности классической синтетической теории эволюции для адекватного описания всех аспектов биологической эволюции». Дискуссия о роли различных факторов в эволюции началась более 30 лет назад и продолжается по сегодня, и иногда высказывается, что «эволюционная биология(подразумевая под этим теорию эволюции, разумеется) подошла к необходимости своего очередного, третьего синтеза».

 

 

71. Понятие о путях и направлениях эволюции.
Как известно, эволюция носит прогрессивный характер, заключающийся в необратимом процессе повышения уровня организации живых организмов. Но еще Ч. Дарвин отмечал, что это не единственный путь развития. Разработке проблемы главных направлений эволюционного процесса были посвящены исследования выдающихся отечественных ученых А. Н. Северцова и И. И. Шмальгаузена.

В результате были разграничены понятия морфофизиологического и биологического прогресса. Согласно данной концепции, под биологическим прогрессом следует понимать возрастание приспособленности потомков по сравнению с предками. Его критерии относятся не к организму, а к виду и надвидовым таксонам, это:

> увеличение численности;

> расширение ареала;

> прогрессивная дифференциация — увеличение числа систематических групп, составляющих данный таксон (видов в роде, родов в семействе, семейств в отряде и т. д.).

Например, насекомые представляют группу животных, находящихся в состоянии биологического прогресса: представители этого класса имеют колоссальную численность, распространены по всей планете, класс включает десятки отрядов, тысячи семейств и родов.

Противоположен биологическому прогрессу биологический регресс (по всем критериям).

Так, класс кистеперых рыб представлен одним-единственным видом — латимерией, которая обитает в очень ограниченном регионе — в Мозамбикском проливе. Другой пример — класс мечехвостов. Он представлен всего 5 видами, обитающими в следующих местах: один вид— в Атлантическом океане у берегов южной части Северной Америки, остальные — у берегов Юго-Восточной Азии и прилегающих островов.

Путей достижения биологического прогресса (главных направлений эволюционного процесса (по А. Н. Северцову) может быть три:

1. Ароморфоз — возникновение новых жизненных форм в результате повышения уровня организации (морфо-физиологический прогресс), обеспечивающего возрастание жизнеспособности, приспособляемости, расширение среды обитания и т. д. Ароморфозы обусловливают эволюцию жизненных форм от простых к сложным (например, от прокариот к эукариотам, от одноклеточных к многоклеточным) и приводят к возникновению новых крупных систематических групп (классов, типов).

2. Идиоадаптация - возникновение частных приспособлений, обеспечивающих освоение новых мест обитания организмов и существование их в конкретных условиях внешней среды. Сопровождается морфофизиологическими изменениями, не затрагивающими уровень организации. Хорошим примером служат разнообразные виды насекомых, приспособленных к обитанию в различных условиях — в воде, почве, воздухе; питающихся разной пищей. Например, такие отряды, как бабочки, жуки, перепончатокрылые, вши, блохи.

3. Общая дегенерация — упрощение организации (морфофизиологический регресс), причем чаще всего в результате редукции каких-либо органов и частей тела, что приводит к узкой специализации (способности существовать в весьма ограниченных условиях среды). Наиболее типичные примеры этого: переход от свободного образа жизни к паразитическому (утрата, например, пищеварительной системы и некоторых органов чувств у цепней или таких жизненно важных органов, как листья и корни, у растения-паразита повилики).

Здесь важно понять, что биологический прогресс может достигаться и при общей дегенерации. Паразитические виды весьма многочисленны и широко распространены.

Биологический регресс ведет в конечном итоге к вымиранию видов. И палеонтологические данные свидетельствуют об исчезновении многих групп организмов, некогда весьма многочисленных на Земле. Это динозавры, кистеперые рыбы, трилобиты и многие другие.

 

 


Дата добавления: 2015-01-19; просмотров: 87; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Закон гомологических рядов Н.И. Вавилова. Его фундаментальное и прикладное значение. | Искусственный отбор.
lektsii.com - Лекции.Ком - 2014-2018 год. (0.036 сек.) Главная страница Случайная страница Контакты