Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Система отсчёта времени и координат




Для вычисления орбит спутников, прогнозирования их движения используются одни системы координат, для определения координат пунктов в процессе наблюдений используются другие системы, а для использования полученных координат при решении различных прикладных задач требуются совершенно иные системы. Кроме того, поскольку решение задач космической геодезии производится по наблюдениям объектов, движущихся с огромными скоростями, то нужна совершенная теория времени.

Наблюдения небесных тел, как искусственных, так и естественных, включая Землю, можно использовать для описания их движения, если параметры наблюдений относятся к системе координатных осей, которые предполагаются фиксированными в пространстве, или при хорошо известных временных изменениях по отношению к другим фиксированным осям. Такие фиксированные в пространстве системы называют инерциальными. Их оси не изменяют своего направления относительно сверх далеких внегалактических объектов. Свободная материальная точка в такой системе движется

движения искусственных спутников Земли (ИСЗ). Однако в такой системе положение наблюдателя и потенциал земного тяготения были бы функциями времени. Поэтому для их описания применяют системы координат, жестко связанные с Землей. Системы, вращающиеся вместе с Землей, называют земными, в то время как инерциальные системы, не участвующие в суточном вращении, обычно называют небесными или звездными. Системы, начало которых совпадает с центром масс Земли, называют геоцентрическими. Земные геоцентрические системы называют также общеземными или глобальными, мировыми референцными (опорными), или условными земными системами (условными - в смысле принятыми по соглашению). Общеземные системы образуются с помощью методов космической геодезии по наблюдениям на радиоинтерферометрах со сверхдлинными базами (РСДБ), лазерной локации спутников и Луны, по спутникам GPS и ГЛОНАСС. Анализ нескольких общеземных систем координат, созданных методом лазерной локации спутников, показал, что несовпадение их начал с геоцентром находится в пределах около 5 м. Локальные референцные системы образуются с помощью градусных измерений классической геодезии (триангуляция, трилатерация, полигонометрия, астрономические определения). Несовпадение центров локальных референц-эллипсоидов с геоцентром может составлять несколько сотен метров. Различие между общеземными и локальными референцными системами отражает технологию построения координатных систем: определение положений в космической геодезии обычно производится по спутникам, вращающимся вокруг центра масс Земли, в то время как в классической геодезии производится раздельное определение плановых координат и высот на основе физических принципов измерений относительно геоида.

Направления на спутник во время наблюдений получают либо относительно точек горизонта, либо относительно звезд в различных топоцентрических системах с началом в точке наблюдений. При рассмотрении некоторых вопросов космической геодезии применяются системы с началами в центре Солнца (гелиоцентрические), в барицентре Солнечной системы, в барицентре системы Земля-Луна (барицентрические), в центре масс некоторой планеты (планетоцентрические) и в центре спутника (спутникоцентрические). За основную координатную плоскость системы принимают плоскости земного или небесного экваторов, горизонта или орбиты ИСЗ, в связи с чем выделяют экваториальные, горизонтные и орбитальные системы координат. Иногда используются эклиптические и галактические системы координат. Направления осей системы координат задаются относительно некоторых точек небесной сферы или земной поверхности. Можно также говорить о фундаментальных векторах, с помощью которых задается направление координатных осей. К этим векторам относят вектор кинетического момента Земли, направления мгновенной оси ее вращения, вектор направления силы тяжести, нормаль к орбите Земли (к эклиптике), вектор линии узлов земной орбиты (направление на точку весеннего равноденствия) и другие. Координаты, связанные с отвесной линией, называют астрономическими. В каждой системе положение точки может быть представлено в форме прямоугольных (декартовых) или сферических координат, а для систем, связанных с эллипсоидами, - также в форме геодезических (сфероидических, или эллипсоидальных, или криволинейных) координат. Вследствие того, что выбранные для ориентировки систем точки могут изменять свое положение, обязательно указывается эпоха, - тот момент, к

которому относятся направления осей. При построении систем координат, в которых учитываются релятивистские эффекты, вводят систему отсчета, состоящую из системы координат и системы времени. При проведении топографо-геодезических работ и навигации часто используются плоские координаты в различных картографических проекциях. В России и странах СНГ широко распространена проекция Гаусса-Крюгера. В спутниковой аппаратуре и ее программном обеспечении пользователи часто встречаются с близкой к ней поперечной проекцией Меркатора UTM. В связи с тем, что обычно координатная система реализуется в виде совокупности координат точек, относящихся к ней, на некотором уровне точности возможны различные варианты одних и тех же систем, задаваемых разными наборами точек и получаемых по разным наборам информации. Чтобы формулировать задачу движения спутника вокруг Земли в соответствии с законами Ньютона, необходима инерциальная координатная система, в которой можно выражать векторы силы ускорения, скорости и положения. Инерциальная опорная система по определению должна быть стационарной в пространстве или движущейся с постоянной скоростью (без ускорения). Такая система задается следующим образом:

- начало находится в центре масс Земли О (рис. 2.1),

- ось z направлена по мгновенной оси вращения Земли к истинному северному полюсу мира P,

- ось x – направлена в экваториальной плоскости к истинной точке весеннего равноденствия 􀁅 (точке пересечения плоскости истинного экватора Земли с орбитой Земли, наклоненной к экватору на угол ε),

- ось y дополняет систему до правой. Строго говоря, это определение не отвечает требованиям, высказанным ранее. Центр масс Земли в такой системе движется вокруг Солнца с изменяющейся в соответствии с законами Кеплера скоростью. Однако на коротких интервалах времени эту систему координат можно считать инерциальной. Наиболее точные инерциальные небесные системы реализуются МСВЗ в форме международных небесных систем отсчета International Celestial Reference Frame, ICRF. Их первая реализация относится к 1995 г. Эти системы определяются через каталоги экваториальных координат более чем 200 компактных внегалактических объектов (преимущественно квазаров), полученными по наблюдениям на радиоинтерферометрах со сверхдлинными базами (РСДБ)

Объекты в каталоге ICRF разделены на три категории: «определяющие», «кандидаты в определяющие» и другие. Определяющие источники должны иметь большое число наблюдений (не менее 20), а протяженность наблюдений должна быть не менее двух лет. В реализации 1995 г. число таких источников равно 212. Источники с недостаточным количеством наблюдений или с недостаточной продолжительностью наблюдений относятся к кандидатам в определяющие источники, возможно, они станут определяющими в дальнейших реализациях ICRF. Число таких источников равно 294. В категорию «другие» вошли источники с плохо определенными положениями, но которые могут быть полезными при установлении связей ICRF с другими системами. Полное число всех источников равно 667. Координаты радиоисточников вычисляются ежегодно несколькими Центрами анализа МСВЗ и независимыми группами обработки данных РСДБ. По результатам этой обработки выводятся средние взвешенные координаты источников. Для определяющих радио источников погрешности в прямых восхождениях составляют ±0″.00035, а в склонениях ±0″.00040. Постоянство направлений осей ICRF в пространстве основано на предположении, что внегалактические объекты не имеют никаких собственных движений. В земных геоцентрических системах координат началом является центр масс Земли, а направление осей связывается с положением полюса Земли, ее экватора и меридиана Гринвича. Для краткости будем называть эти системы общеземными и использовать для них сокращение ОЗСК. Эти системы вращаются вместе с Землей при ее суточном движении в пространстве. В такой системе положения точек, закрепленных на твердой поверхности Земли, имеют координаты, которые подвергаются только малым изменениям со временем из-за геофизических эффектов (тектонические или приливные деформации), которые можно достаточно точно учитывать, используя соответствующие модели явлений. Установление положения оси вращения Земли, ее полюса и экватора, а также начального меридиана для счета долгот и времени связано с проблемой движения полюса. Система общеземных геоцентрических прямоугольных координат, фиксированная по отношению к Земле, определяется следующим образом:

• начало в центре масс Земли,

• ось z проходит через УЗП,

• ось x проходит через точку G пересечения плоскости экватора и начального меридиана, определяемого как начальный меридиан для счета долгот совокупности станций, реализующих координатную систему,

• ось y находится в экваториальной плоскости и дополняет систему до правой.

Мировая геодезическая система WGS-84 (World Geodetic System - 84) была разработана Военно-картографическим агентством Министерства обороны США [DMA, 1991]. Система WGS-84 реализована путем модификации координатной системы NSWC-9Z-2, созданной по доплеровским измерениям, путем приведения ее в соответствие с данными Международного Бюро Времени (МБВ). Для этого система NSWC-9Z-2 была сдвинута на -4.5 м по оси Z, повернута к западу на 0.814″, и масштаб изменен на - 0.6·10-6. Начало системы WGS-84 находится в центре масс Земли, ось Z направлена к Условному земному полюсу (УЗП), установленного МБВ на эпоху 1984.0. Ось X находится на пересечении плоскости опорного меридиана WGS-84 и плоскости экватора УЗП. Опорный меридиан является начальным (нулевым) меридианом, определенным МБВ на эпоху 1984.0. Ось Y дополняет систему до правой, то есть под углом 90о на восток. Начало координатной системы WGS-84 и ее оси также служат геометрическим центром и осями референц-эллипсоида WGS-84. Этот эллипсоид является эллипсоидом вращения. Его параметры почти идентичны параметрам международного эллипсоида GRS80.

Величина гравитационной постоянной для атмосферы Земли принята по рекомендациям Международной ассоциации геодезии (МАГ). В дополнение к параметрам J 2 и C20 приводятся их вариации из-за приливных деформаций Земли: δJ 2 = 9.3·10-9, что соответствует в нормированном коэффициенте величине δC20 = -4.16⋅10-9. Необходимая для определения главных моментов инерции Земли A,B,C динамическая эллиптичность H находится из соотношения: 1/ H = 305.4413 ± 0.0005 .

Нормальное ускорение силы тяжести на эллипсоиде определяется формулой Сомильяна :

 

 

где a и b - большая и малая полуоси эллипсоида, а e γ и p γ – соответственно ускорения силы тяжести на экваторе и на полюсе. С числовыми значениями формула приводится к виду:

 

 

Модель гравитационного поля Земли представлена разложением до степени n и порядка m, равным 180, и содержит 32755 коэффициентов. Система WGS-84 используется как система для бортовых эфемерид спутников GPS с 23 января 1987 г., заменив собою WGS-72. Обе системы были получены на основе доплеровских измерений спутников TRANSIT.

Носителями системы были пять станций Контрольного сегмента GPS. Точность привязки начальной реализации системы WGS-84 к геоцентру не хуже, чем 1 м [DMA ,1991].

С середины 90-х сеть станций WGS-84 значительно выросла. В 1994 г. Министерство обороны США ввело реализацию WGS-84, которая полностью базировалась на GPS измерениях. Эта новая реализация известна как WGS- 84(G730), где буква G стоит для обозначения GPS, а 730 обозначает номер недели (начиная с 0h UTC 2 января 1994 г.), когда Национальное управление по отображению и картированию (National Imagery and Mapping Agency, NIMA) начало представлять свои орбиты GPS в этой системе. Следующая реализация WGS-84, названная WGS-84(G873) Начало, ориентировка и масштаб WGS-84(G873) определены относительно принятых координат для 15 станций слежения GPS: 5 из них поддерживаются ВВС, а 10 – NIMA (рис. 4.6 в главе 4). Система WGS- 84(G873) приближена к ITRF94 с субдециметровой точностью. Космическая геодезия, в основном, измеряет время прохождения сигналов от внеземных объектов. При этом и наблюдатель, и наблюдаемые объекты находятся в постоянном движении. Поэтому точное определение времени является основополагающим. Рассматриваются два аспекта времени: эпоха и интервал. Эпоха определяет момент события, а интервал - это время, протекшее между двумя эпохами, измеренное в единицах некоторой соответствующей шкалы времени. При решении задач космической геодезии время выполняет две

функции:

• показывает угол поворота земной системы координат относительно небесной, что необходимо при переходах из одной системы в другую,

• выступает в качестве независимой переменной в уравнениях движения естественных и искусственных небесных тел.

В соответствии с решаемыми задачами применяются два типа систем времени: астрономические и атомные системы времени. Астрономические системы времени связаны с суточным вращением Земли. Вращение Земли не является постоянным. Его скорость показывает и периодические изменения, и долгосрочные дрейфы порядка секунды за год. В противоположность им, системы атомного времени имеют строго равномерную шкалу. Их постоянство во времени характеризуется точностью порядка микросекунды за год, то есть более чем на шесть порядков выше, чем в системах астрономического времени. Однако когда требуется наивысшая точность результатов, системы атомного времени становятся недостаточными из-за того, что в них не учитываются эффекты общей и специальной теории относительности, имеющие, как правило, периодический характер. В таких случаях применяется динамическое время. Кроме того, должна обеспечиваться надежная взаимосвязь между различными системами

времени. Во всех указанных выше случаях необходимо знать моменты относительно нульпункта системы, то есть, необходима абсолютная привязка событий к шкале соответствующего времени. Главные трудности заключаются в обеспечении требуемой точности. Она обусловлена тем, с какой скоростью приходится иметь дело: скоростью вращения Земли, скоростью движения спутника по орбите или скоростью распространения электромагнитной волны. Например, для достижения миллиметровой

точности преобразования координат при переходе от инерциальной системы к земной системе необходимо знать время с точностью около 10 мкс. За такой промежуток времени навигационный спутник пролетает 5 см. Еще более высокие точности необходимы при измерении интервалов времени. Основное измерение в спутниковом приемнике заключается в определении времени прохождения сигнала от спутника до приемника. Умножив это время на скорость распространения электромагнитной волны, получают дальность до спутника. Здесь та же ошибка в 10 мкс дает ошибку в дальности в 3 км. Применяемый в современных навигационных системах метод однонаправленного определения дальности требует очень высокого уровня точности измерения интервалов времени с одновременной привязкой к шкале времени. Для этого на спутниках используются атомные часы (цезиевые и рубидиевые). В приемниках обычно устанавливаются менее дорогие и менее точные кварцевые часы. При выполнении продолжительных наблюдений для целей мониторинга приемник может подключаться к водородному стандарту частоты. Наблюдающийся в последние два десятилетия прогресс при производстве приборов для хранения и измерения времени, в частности появление атомных часов, открыл принципиальные возможности для разработки спутниковых технологий. Истинным звездным временем s называется часовой угол истинной точки весеннего равноденствия. Это время можно определить, если наблюдать некоторую звезду в момент ее кульминации, то есть при прохождении меридиана места. Для верхней кульминации звезды часовой угол равен нулю, и тогда звездное время равно ее истинному прямому восхождению: s =α . (2.45)

Звездное время каждой обсерватории, определяющей время подобным образом, приводится к меридиану Гринвича: S = s −λ ,

где λ - астрономическая долгота обсерватории в момент наблюдения, а S – Гринвичское истинное звездное время. Как время s, так и долгота λ, связаныс Небесным эфемеридным полюсом.В истинное Гринвичское звездное время S (Greenwich Apparent SiderialTime - GAST) вводится поправка за нутацию по прямому восхождению,называемая уравнением равноденствия, и получается Гринвичское среднеезвездное время S~ ( Greenwich Mean Siderial Time, GMST): S~ = S − Δψ cos(ε + Δε ) . (2.47)

Среднее звездное время S~ переводится в среднее солнечное время меридиана Гринвича, называемое всемирным временем, полученным из наблюдений и обозначаемым как UT0: UT0 = (S~ − S~0 ) −ν (S~ − S~0 ) . После исключения из UT0 влияния движения полюса Земли на долготу обсерватории, имеющей астрономические координаты ϕ и λ, получается всемирное время UT1: UT1 =UT0 − (x p sinλ − y p cosλ ) ⋅ tgϕ /15 .

Международное атомное время TAI было введено июле 1955 г. в качестве основного временного стандарта. До атомного времени наилучшим приближением к постоянному времени было эфемеридное время ET, которое использовало наилучшую теорию вращения Земли для удаления всех известных изменений в скорости вращения. Использование эфемеридного времени продолжалось до 1984 г. До этого времени оно было независимой временной переменной для планетарных эфемерид. Атомная секунда определена как 9192631770 колебаний невозмущенных переходов между двумя энергетическими уровнями цезия 133. Это число было выбрано для того, чтобы приблизить величину фундаментальной единицы времени в Международной системе научных единиц SI к средней секунде астрономических систем времени. Время TAI вычисляется из группы атомных часов более чем 50 лабораторий научных центров разных стран. Это делает Международное бюро мер и весов (BIH), базирующееся в Севре, вблизи Парижа, для чего использует различные методы сравнения часов, включая сигналы радионавигационной системы Loran-C, телетрансляции и GPS. Шкала времени TAI была совмещена со шкалой UT1 1 января 1958 г. Связь между атомным временем TAI и всемирным временем UT1 производится либо через разность UT1-ATI, либо через всемирное координированное время UTC, для которого также сообщается разность шкал UT1- UTC. Время UTC по своей природе является атомным. Оно используется для передач сигналов точного времени. Но величина разности UT1- UTC по определению времени UTC не должна быть более 0.9 с. В случае приближении ее к этому значению в шкалу UTC корректируют на 1 секунду. Поэтому шкала времени UTC является ступенчато-равномерной. Коррекция шкалы UTC на величину ±1 секунду проводится Международным бюро мер и весов Динамическое время является независимой переменной в уравнениях движения тел в гравитационном поле в соответствии с общей теорией относительности (ОТО). Наиболее близкая инерциальная система отсчета, к которой мы имеем доступ через ОТО, имеет начало в центре масс Солнечной системы (барицентре). Динамическое время, измеряемое в этой системе, называется Барицентрическим динамическим временем (Barycentric Dynamical Time, TDB). Часы, расположенные на Земле, будут показывать периодические изменения до 1.6 мс по отношению к TDB из-за движения Земли в гравитационном поле Солнца. Время TDB важно для РСДБ, где земные обсерватории записывают сигналы внегалактических радиоисточников. Для описания уравнений движения спутника Земли достаточно использовать TDT (Terrestrial Dynamical Time - TDT), которое представляет единую временную шкалу для движения в гравитационном поле Земли. Оно имеет ту же скорость (по определению), что и атомные часы на Земле. Время TDT предназначено быть теоретически идеальным представлением международного атомного времени TAI. Сигналы, передаваемые спутниками GPS, относятся к системе времени GPS Time (GPST). Время GPST определяется на основе измерений от набора цезиевых и рубидиевых стандартов частоты, находящихся на станциях слежения и на борту спутников. Нульпункт шкалы этого атомного времени был совмещен со шкалой времени UTC в 1980 г. Но есть два важных различия между GPST и UTC. Во-первых, GPST определяется в реальном времени, а во-вторых, это шкала непрерывного времени, в ней игнорируются скачки секунд. Время GPST регулируется таким образом, чтобы оставаться со временем UTC(USNO) в пределах 1 мкс (без учета скачков секунд). В действительности в последние годы время GPST поддерживается в пределах 10 нс от UTC(USNO). В результате, GPST отличается от UTC на целое число секунд плюс доли микросекунды. Так на 1.01.2001 GPST=UTC+13 c. Эпоха времени в GPST определяется через номер недели GPS и номер секунды в неделе. Номер недели GPS дается в навигационном сообщении по модулю 1024, поскольку для него отводится 10 бит. Первый цикл из 1024 недель GPS начался в полночь с субботы 5 января на воскресенье 6 января 1980 г. (0:00:00 UTC, 6 января 1980 г., юлианская дата 2444244.500). Чтобы обеспечить оценку времени UTC, передаваемое каждым спутником GPS навигационное сообщение включает временные разности между GPST и UTC(USNO) по модулю одна секунда и скорость их изменения. Навигационное сообщение включает также разность в целых секундах между двумя шкалами из-за скачков секунд. Эти параметры позволяют приемнику вычислять точное значение UTC(USNO). Текущая точность таких оценок около 25 нс. Часы на борту спутников подвержены релятивистским эффектам. В соответствии со специальной теорией относительности часы на борту спутника, движущегося с постоянной скоростью, должны отставать по сравнению с часами на Земле. В соответствии с общей теорией относительности часы на спутнике должны идти быстрее, чем на Земле, из-за разности гравитационных потенциалов. Полное влияние на часы спутника на круговой орбите с радиусом 26560 км должно давать уход часов вперед на 38.4 μс за сутки. Чтобы компенсировать это влияние, основная частота при номинальном значении 10.23 МГц генератора часов спутника устанавливается на 0.00455 Гц ниже. Никакие дополнительные релятивистские поправки не потребовались бы, если бы орбиты были полностью круговые. В действительности эксцентриситет спутниковых орбит может быть до 0.02. У эллиптических орбит и скорость, и возмущающий гравитационный потенциал изменяется в зависимости от положения спутника на орбите. Орбитальные параметры вычисляются Контрольным сегментом и передаются каждым спутником. Приемник применяет релятивистскую поправку ко времени часов спутника в

соответствии с Интерфейсным контрольным документом ICD. Величина этой зависящей от времени поправки может изменяться от нуля до 45 нс, в зависимости от положения спутника на орбите. Спутники системы ГЛОНАСС имеют на борту цезиевые стандарты частоты, шкалы которых синхронизированы между собой со средней квадратической ошибкой 20 нс. Системное время ГЛОНАСС формируется по водородному стандарту частоты Центрального синхронизатора системы, имеющего суточную нестабильность 5⋅10-14.

6. Принцип различия геодезической СК и WGS-84.

В геодезической системе координат положение точки определя-

ется высотой Н над принятым референцтэллипсоидом, широтой В и

долготой L.

Геодезическая широта определяется как угол, образованный нор-

малью к поверхности эллипсоида с плоскостью его экватора. Геодези-

ческая долгота — это двугранный угол между плоскостями начального

меридиана и меридиана данной точки.

Такая эллипсоидальная система координат применяется при об-

работке наземных геодезических измерений. В космической геодезии

при создании спутниковых геодезических сетей, которые являются

пространственными и физически не связаны с какой-либо отсчетной

поверхностью, более удобна система пространственных прямоуголь-

ных координат X, Y, Z. Преобразование эллипсоидальных геодезичес-

ких координат в прямоугольные осуществляется по формулам:

(3.15)

где N= . ; а и b — соответственно большая и малая

Va2 cos2 В + b2 sin2 В

полуоси референц-эллипсоида

И эллипсоидальная, и пространственная прямоугольная системы

координат являются геодезическими по определению, несмотря на

различия между ними. Как и всякая другая геодезическая система, общеземная система

координат определяется параметрами земного эллипсоида, гравита-

ционным полем Земли и координатами пунктов на физической по-

верхности Земли. Начало системы координат располагается в центре

масс Земли. Направления ее осей были зафиксированы на XIV Гене-

ральной ассамблее Международной ассоциации геодезии (МАГ) в

1967 г. [18, 48]. Малая ось общего земного эллипсоида совмещена со

средней осью вращения Земли. Пространственное направление сред-

ней оси вращения Земли закреплено относительно звезд координата-

ми среднего полюса на среднюю эпоху 1900 - 1905 гг. - Международ-

ное условное начало (МУН) В настоящее время положение полюса относительно МУН (коор-

динаты хр, ур) определяют с ошибкой в несколько сантиметров из ре-

гулярных наблюдений выполняемых методом радиоинтерферометрии

со сверхдлинной базой (РСДБ) - Very Long Baseline Interferometry

(VLBI).

Плоскость начального меридиана устанавливается определением

начала отсчета долгот как результат обработки долготных наблюдений

национальных служб времени, сотрудничающих в рамках Междуна-

родного бюро времени (МБВ) - Bureau International de ГНеиге (BIH).

Начало отсчета долгот задается принятыми долготами национальных

служб после учета поправок за движение полюса и соответствует точке

на среднем экваторе в период 1900-1905 гг. вблизи Гринвичского мери-

диана [18, 69].

По форме общеземная система координат может быть эллипти-

ческой (ВL%, #*) и пространственной прямоугольной (X, У, Z). Пере-

ход между ними осуществляется по формулам (3.15) и (3.16). В косми-

ческой геодезии более удобно использовать пространственную прямо-

угольную систему.

Составной частью общеземной системы координат являются ко-

ординаты пунктов, закрепленных на физической поверхности Земли и

объединенных в геодезические сети. Различия общеземных коорди-

натных систем связаны с особенностями построения и обработки гео-

дезических сетей.

Наиболее известной из современных является общеземная гео-

центрическая координатная система ITRS (IERS Terrestrial Reference

System), которая поддерживается Международной службой вращения

Земли IERS. Ежегодно, начиная с 1989 г., новейшими методами косми-

ческой геодезии и измерениями с использованием спутниковых при-

емников формируется сеть пунктов ITRF (IERS Terrestrial Reference

Frame). Сеть ITRF с высокой точностью закрепляет начало координат

в центре масс Земли и ориентирует координатные оси. Точность поло-

жения пунктов оценивается погрешностью до 10 см.


Поделиться:

Дата добавления: 2015-01-19; просмотров: 290; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты