Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Предельный переход в неравенствах для последовательностей.




Ответ:

Арифметические операции над сходящимися последовательностями приводят к таким же арифметическим операциям над их пределами. В этом пункте покажем, что неравенства, которым удовлетворяют элементы сходящихся последовательностей, в пределе переходят в соответствующие неравенства для пределов этих последовательностей.

Теорема. Если элементы сходящейся последовательности {xn}, начиная с некоторого номера, удовлетворяют неравенству xnb (xnb), то и предел a этой последовательности удовлетворяет неравенству ab (ab).

Доказательство. Пусть все элементы xn, по крайней мере начиная с некоторого номера, удовлетворяют неравенству xnb. Требуется доказать неравенство ab. Предположим, что a < b. Поскольку a - предел последовательности {xn}, то для положительного ε = b - a можно указать номер N такой, что при nN выполняется неравенство |xn - a| < b - a. Это неравенство эквивалентно следующим двум неравенствам: -(b - a) < xn - a < b - a. Используя правое из этих неравенств, получим xn < b, а это противоречит условию теоремы. Случай xnb рассматривается аналогично. Теорема доказана.

Замечание. Элементы сходящейся последовательности {xn} могут удовлетворять строгому неравенству xn > b, однако при этом предел a может оказаться равным b. Например, если , то xn > 0, однако

.

Следствие 1. Если элементы xn и yn сходящихся последовательностей {xn} и {yn}, начиная с некоторого номера, удовлетворяют неравенству xnyn, то их пределы удовлетворяют такому же неравенству:

В самом деле, элементы последовательности {yn - xn} неотрицательны, а поэтому неотрицателен и ее предел

.

Отсюда следует, что

Следствие 2. Если все элементы сходящейся последовательности {xn} находятся на сегменте [a, b], то и ее предел c также находится на этом сегменте.

В самом деле, так как axnb, то acb.

Следующая теорема играет важную роль в различных приложениях.

Теорема. Пусть {xn} и {zn} - сходящиеся последовательности, имеющие общий предел a. Пусть, кроме того, начиная с некоторого номера, элементы последовательности {yn} удовлетворяют неравенствам xnynzn. Тогда последовательность {yn} сходится и имеет предел a.

Доказательство. Нам достаточно доказать, что последовательность {yn - a} является бесконечно малой. Обозначим через N* номер, начиная с которого выполняются неравенства, указанные в условии теоремы. Тогда, начиная с этого же номера, будут выполняться также неравенства xn - ayn - azn - a. Отсюда следует, что при nN* элементы последовательности {yn - a} удовлетворяют неравенству

|yn - a| ≤ max {|xn - a|, |zn - a|}.

Так как и , то для любого ε > 0 можно указать номера N1 и N2 такие, что при nN1 |xn - a| < ε, а при nN2 |zn - a| < ε. Пусть N = max{N*, N1, N2}. Начиная с этого номера, имеет место неравенство |yn - a| < ε. Итак, последовательность {yn - a} - бесконечно малая. Теорема доказана.


Поделиться:

Дата добавления: 2015-01-19; просмотров: 220; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты