Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Виды поровой воды.




Вода в форме пара.

Водяной пар является одной из составных частей грунтовой атмосферы. Количество водяного пара в приземном слое воздуха весьма изменчиво и обычно колеблется от десятых долей до нескольких процентов. Содержание пара в грунтовой атмосфере несколько выше. Однако общее количество водяного пара в грунте не превышает 0,001% от всего веса грунта. Несмотря на это, вода в форме пара играет большую роль в процессах, протекающих в грунтах, так как она, во-первых, является единственной формой воды, которая способна передвигаться в грунте при незначительной его влажности, и, во-вторых, потому, что путем конденсации пара на поверхности грунтовых частиц образуются другие виды воды.

Передвижение водяного пара возможно как со всей массой газообразной компоненты, так и независимо от ее движения под влиянием разности упругости паров в различных слоях грунта. В последнем случае движение будет проходить от слоя с большей упругостью к слою с меньшей упругостью. В большинстве случаев газообразная компонента в грунте полностью насыщена водяными парами; относительная влажность ее тогда равна 100%. Если пары воды находятся в состоянии насыщения, т. е. имеют максимальную упругость при данной температуре, то передвижение их определяется только величиной температуры и будет направлено от слоя с более высокой к слою с более низкой температурой.

Парообразная вода в грунте находится в постоянном динамическом равновесии с другими видами воды (в частности, с гигроскопической водой) и с парами воды в атмосфере. При определенных условиях парообразная вода конденсируется.

Конденсация паров воды может происходить под влиянием падения температуры — термическая конденсация, и в силу молекулярного взаимодействия паров воды с грунтовыми частицами — молекулярная конденсация. В том случае, когда молекулы парообразной воды адсорбируются на поверхности грунтовых частиц, образуется гигроскопическая вода.

Вода в твердом состоянии.

Гравитационная вода является источником других видов воды в грунте; ее химический состав сказывается на составе этих видов. При температуре грунта ниже O°C гравитационная вода замерзает и содержится в грунте в виде льда. Лед может содержаться в грунте в виде отдельных кристаллов или в виде прослоев чистого льда, достигающих местами значительной мощности. Кристаллы льда в большинстве случаев играют роль цемента, скрепляющего минеральные частицы друг с другом. Благодаря присутствию льда резко изменяются свойства грунта.

Свойства мерзлых рыхлых пород очень чувствительны к изменению температуры, особенно при переходе ее через нуль градусов, так как при этом резко изменяется содержание незамерзшей воды. Изменение количества незамерзшей воды влияет на большую часть физических и химических свойств дисперсных мерзлых грунтов.

При промерзании дисперсных и особенно глинистых пород происходит миграция влаги и льдовыделение, которые резко изменяют строение грунтов, что также влияет на их физические и механические свойства. Следует иметь в виду, что повторные замерзания и оттаивания дисперсных пород могут приводить к необратимым изменениям структуры (и в том числе дисперсности) и их свойств (увеличивается количество свободной воды, возрастает фильтрационная способность, изменяется прочность, электрические свойства и т. д.).

Влажные песчаные грунты при промерзании резко изменяют свои свойства даже при близких к нулю отрицательных температурах; глинистые же грунты при замерзании изменяют свои свойства более монотонно и плавно и в более значительном диапазоне отрицательных температур. Неразрушенные скальные породы при промерзании изменяют свои физические и механические свойства в наименьшей мере. Изучением свойств мерзлых грунтов занимается мерзлотоведение.

Кристаллизационная вода и химически связанная вода.

Кристаллизационная вода и химически связанная (конституционная) вода принимают участие в строении кристаллических решеток различных минералов. Кристаллизационная вода входит в состав минералов типа CaSO4•2H2O (гипс). Кристаллизационная вода, участвуя в построении кристаллической решетки минералов, сохраняет свою молекулярную форму. Химически связанная вода входит в гидраты типа гидроокисей Ca(OH)2. Молекулы ее в результате химической реакции распадаются на ионы H+ и ОН-. Химически связанная вода не сохраняет своего молекулярного единства.

Химически связанная вода по сравнению с кристаллизационной водой более прочно связана с другими молекулами кристаллических решеток. Удаление из минералов химически связанной воды возможно только путем их -нагревания при высокой температуре, превышающей 200°С. Кристаллизационная вода может быть выделена из минералов при более низких температурах. Значительное количество кристаллизационной воды, содержащейся в гипсе (16% из общего содержания ее в гипсе — 20,93%), выделяется уже после 32-часового нагревания при температуре 82°C. Удаление кристаллизационной воды из минералов заметно отражается на многих их химических и физических свойствах. Выделение химически связанной воды из минералов приводит к их распаду.


Поделиться:

Дата добавления: 2015-01-29; просмотров: 88; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты