Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Численные методы интерполирования функций. Постановка задачи. Первая формула Ньютона для равноотстоящих узлов

Читайте также:
  1. Cтруктуры внешней памяти, методы организации индексов
  2. II закон Ньютона.
  3. II. Методы искусственной детоксикации организма
  4. II. Методы несанкционированного доступа.
  5. III закон Ньютона.
  6. III. Для обеспечения проверки исходного уровня Ваших знаний-умений необходимому, предлагаем решить 2 задачи.
  7. III. Для обеспечения проверки исходного уровня Ваших знаний-умений необходимому, предлагаем решить 2 задачи.
  8. III. Методы манипуляции.
  9. IV. Традиционные методы среднего и краткосрочного финансирования.
  10. IV.1.3. Формула Клина

В практических задачах часто возникает необходимость представлять сложную аналитическую функцию более простой, либо использовать функции, заданные таблично. Необходимо для дальнейшего исследования представить табличную функцию в виде аналитической.

Существуют различные способы получения таких функций. Один из них интерполирование. В общем виде, задачи интерполирования формулируются так:

Пусть функция y=f(x) задана в (n+1) точке x0,x,…,xn своими значениями y0,y1,…,yn, то есть y0=f(x0), …, yn=f(xn).

Требуется подобрать достаточно простую функцию , удовлетворяющую следующим условиям:

1) В точке x0,x,…,xn, значения функции должны совпадать со значениями данной функции: , k=0,1,…,n.

2) Во всех остальных точках из области определения, выполняется приближенное равенство: .

Функция называется интерполирующей, процесс ее построения - интерполированием, точки x0,x,…,xn - узлами интерполирования. Интерполирующая функция подбирается из определенного класса функций. Часто в качестве такой функции берется многочлен n-й степени, процесс построения такого многочлена - параболическое интерполирование.

Пусть для функции y=f(x) заданы значения yi=f(xi) для равноотстоящих значений независимой переменной: xi=x0+ih, где i=0..n, h=(b-a)/n, h - шаг интерполяции. Требуется подобрать полином Pn(x) сте­пени не выше n, принимающий в точках xi значения Pn(xi)=yi.

Первой интерполяционной формулой Ньютона называют многочлен вида

Легко видеть, что этот многочлен полностью удовлетворяет требованиям поставленной задачи. Действительно, во-первых, степень полинома не выше n, во-вторых,

На практике чаще 1-ый интерполяционный многочлен Ньютона используют в другом виде. Обозначим , тогда

Абсолютную погрешность 1-ой формулы можно оценить следующим образом:

Вторым интерполяционным многочленом Ньютона называется многочлен вида:

На практике удобней пользоваться другой формулой:

Обозначим , тогда =t+1 , = t+2… =t+n-1, тогда многочлен примет вид:

.


 


Дата добавления: 2015-01-29; просмотров: 31; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Численные методы интерполирования функций. Постановка задачи. Формула Лагранжа для неравноотстоящих узлов | Постановка задачи численного интегрирования. Формулы прямоугольников. Двойной пересчет.
lektsii.com - Лекции.Ком - 2014-2018 год. (0.007 сек.) Главная страница Случайная страница Контакты