Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Генераторы и синхронные компенсаторы




Современные электрические станции вырабатывают энергию в форме трехфазного переменного тока. Значительная ее часть используется без преобразования в другие виды энергии. Однако на транспорте, в металлургической промышленности, для сварки и т.д. необходимо использование постоянного тока. В этих случаях для выработки энергии используют генераторы постоянного тока. Кроме того, генераторы постоянного тока используют как возбудители синхронных генераторов, для питания радиостанций, электролиза и зарядки аккумуляторных батарей.

Простейшим генератором является виток, вращающийся в магнитном поле полюсов N и S (см. рис. 133).

Концы витка 1 (рис. 133) присоединяются к двум медным полукольцам (сегментам), называемым коллекторными пластинами. Пластины жестко укрепляют на валу машины и изолируют как друг от друга, так и отвала. На пластинах помещают неподвижные щетки 2 и 3, электрически соединенные с приемником энергии. При вращении витка коллекторные пластины также вращаются вместе с валом машины и каждая из неподвижных щеток 2 и 3 соприкасается то с одной, то с другой пластиной. Щетки на коллекторе устанавливают так, чтобы они переходили с одной пластины на другую в тот момент, когда э. д. с, индуктируемая в витке, была равна нулю. В этом случае при вращении якоря в витке индуктируется переменная э. д. с, изменяющаяся синусоидально при равномерном распределении магнитного поля, но каждая из щеток соприкасается с той коллекторной пластиной и соответственно с тем из проводников, который в данный момент находится под полюсом определенной полярности. Следовательно, э. д. с. на щетках 2 и 3 знака не меняет, и ток по внешнему участку замкнутой электрической цепи протекает в одном направлении от щетки 2 через сопротивление r к щетке 3. Однако несмотря на то, что направление э. д. с. во внешней цепи остается неизменным, величина ее меняется во времени, т. е. получена не постоянная, а пульсирующая э. д. с. Ток во внешней цепи будет также пульсирующим. Чтобы сгладить эти пульсации и сделать напряжение не только прямым, но и постоянным, якорь генератора составляют из большого числа отдельных катушек, или секций, сдвинутых на определенный угол друг относительно друга, а коллектор составляют не из двух полуколец, а из соответствующего числа пластин, лежащих на поверхности цилиндра, вращающегося на общем валу с якорем. Свойства генераторов зависят от способа питания их обмоток возбуждения, и в зависимости от этого они подразделяются на группы: генераторы последовательного, параллельного и смешанного возбуждений.

На электрических станциях применяют трехфазные синхронные генераторы переменного тока. Основными частями синхронной машины являются якорь и индуктор. Наиболее частым исполнением является такое исполнение, при котором якорь располагается на статоре, а на отделённом от него воздушным зазором роторе находится индуктор. Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии. Поле якоря оказывает воздействие на поле индуктора и называется поэтому также полем реакции якоря. В генераторах поле реакции якоря создаётся переменными токами, индуцируемыми в обмотке якоря от индуктора. Индуктор состоит из полюсов -электромагнитов постоянного токаили постоянных магнитов (в микромашинах). Индукторы синхронных машин имеют две различные конструкции: явнополюсную или неявнополюсную. Явнополюсная машина отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока. При неявнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором, с той лишь разницей, что между полюсами оставляется место, незаполненное проводниками (так называемый большой зуб). Неявнополюсные конструкции применяются в быстроходных машинах, чтобы уменьшить механическую нагрузку на полюса.

Обычно синхронные генераторы выполняют с якорем, расположенным на статоре, для удобства отвода электрической энергии. Поскольку мощность возбуждения невелика по сравнению с мощностью, снимаемой с якоря (0,3...2%), подвод постоянного тока к обмотке возбуждения с помощью двух контактных колец не вызывает особых затруднений. Принцип действия синхронного генератора основан на явлении электромагнитной индукции; при вращении ротора магнитный поток, создаваемый обмоткой возбуждения, сцепляется поочередно с каждой из фаз обмотки статора, индуцируя в них ЭДС. В наиболее распространенном случае применения трехфазной распределенной обмотки якоря в каждой из фаз, смещенных друг относительно друга на 120 электрических градусов, индуцируется синусоидальная ЭДС. Соединяя фазы по стандартным схемам «треугольник» или «звезда», на выходе генератора получают трехфазное напряжение, являющееся общепринятым стандартом для магистральных электросетей.Частота индуцируемой ЭДС [Гц] связана с частотой вращения ротора n [об/мин] соотношением:

Синхронным компенсатором называется синхронный двигатель облегчённой конструкции, предназначенный для работы на холостом ходу. Синхронные двигатели благодаря возбуждению постоянным током они могут работать с cos = 1 и не потребляют при этом реактивной мощности из сети, а при работе, с перевозбуждением отдают реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшаются падение напряжения и потери в ней, а также повышается коэффициент мощности генераторов, работающих на электростанциях. Синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным являемся перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность. Однако в периоды спада потребительских нагрузок (например, ночью) нередко возникает необходимость работы синхронных компенсаторов также в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность, так как в этих случаях напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения. Для этого каждый синхронный компенсатор снабжается автоматическим регулятором возбуждения или напряжения, который регулирует величину его тока возбуждения так, что напряжение на зажимах компенсатора остается постоянным. Синхронные компенсаторы лишены приводных двигателей и с точки зрения режима своей работы в сущности являются синхронными двигателями, работающими на холостом ходу. Для осуществления асинхронного пуска все синхронные компенсаторы снабжаются пусковыми обмотками в полюсных наконечниках или их полюсы делаются массивными. При этом используется способ прямого, а в необходимых случаях — способ реакторного пуска. В некоторых случаях мощные компенсаторы пускаются в ход также с помощью пусковых фазных асинхронных двигателей, укрепляемых с ними на одном валу. Для синхронизации с сетью при этом обычно используется метод самосинхронизации.



Поделиться:

Дата добавления: 2015-04-18; просмотров: 154; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты