Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Статистический и термодинамический методы изучения систем многих частиц.




Предмет молекулярной физики. Понятие о микроскопическом и макроскопическом состояниях системы. Основные положения молекулярно-кинетической теории строения вещества. Способы изменения энергии системы.

Молекулярная физика – раздел курса общей физики, в котором изучаются макроскопические свойства вещества, обусловленные его молекулярным строением, характером движения молекул и силами, действующими между ними.

Объектом исследования является система, состоящая из множества молекул.

Предметом исследования является свойства вещества и происходящие в них процессы.

Цель – нахождение зависимости между макроскопическими системами частиц.

Микроскопическое состояние системы — это состояние системы, определяемое заданием координат и импульсов всех составляющих систему частиц.

Макроскопическое состояние системы — это состояние системы, характеризуемое небольшим числом величин (Р, V, T).

T, V, p – макроскопические величины.

Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химических веществ.

В основе молекулярно-кинетической теории лежат три основных положения:

1. Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными, т.е. состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.

2. Атомы и молекулы находятся в непрерывном хаотическом движении.

3. Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

Существуют два способа изменения внутренней энергии системы — совершение механической работынад системой и теплообменс другими системами.

Первый способ изменения внутренней энергии — совершение механической работы А' внешними силами над системой или самой системой над внешними телами А (А = -А'). При совершении работы внутренняя энергия системы изменяется за счет энергии внешнего источника.

Второй способ изменения внутренней энергии системы (без совершения работы) называется теплообменом (теплопередачей). Количество энергии, полученное или отданное телом при таком процессе, называется количеством теплотыи обозначается ΔQ.

 

 

Статистический и термодинамический методы изучения систем многих частиц.

В статистическом методе микроскопические величины, характеризующие движение молекулы (к примеру, ее импульс в данный момент времени), являются непредсказуемыми, случайными. Для построения теории создается гипотетическая модель механизма молекулярного движения и пространственного строения вещества. Затем в этой модели разрабатываются методы нахождения плотности вероятностей тех или иных величин, зная которые вычисляют средние значения этих величин.

В термодинамическом методе исследования вещества, в отличие от статистического, не вводятся в рассмотрение какие-либо модельные представления об атомно-молекулярном строении тела, а ставится своей задачей установление зависимости между непосредственно наблюдаемыми макроскопическими (измеряемыми в опыте) величинами, такими как давление, температура, объем, концентрация, напряженность электрического или магнитного поля и т. п. Термодинамика как теоретическая дисциплина строится на трех фундаментальных законах (началах), установленных на основании огромного опытного знания, относящегося к поведению макроскопических систем. Выводы термодинамики имеют весьма общий характер, независимый от выбора гипотетической модели структуры вещества, независимо от характера движения молекул, взаимодействия между ними. Результаты, получаемые в статистической теории, существенным образом зависят от выбора этой гипотетической модели. Недостатком термодинамического метода является невозможность с помощью его вскрыть молекулярную сущность изучаемых явлений. Термодинамика ничего не говорит о механизме происходящих в веществе микропроцессов, а только устанавливает связь между макроскопическими характеристиками вещества. Поэтому в настоящее время в молекулярной физике при исследовании макроскопических свойств вещества разрабатываются оба подхода: статистический и термодинамический. Эти исследования взаимно дополняют друг друга, так как у них один и тот же объект исследования – система, состоящая из многих молекул, и одна и та же цель – нахождение зависимостей между макроскопическими величинами системы частиц.

 


Поделиться:

Дата добавления: 2015-04-18; просмотров: 223; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты