Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Уравнение состояния идеального газа. Изопроцессы.

Читайте также:
  1. A) Сервис Параметры Вид Отображать Строка состояния команд меню
  2. I. Декларация-заявка на проведение сертификации системы качества II. Исходные данные для предварительной оценки состояния производства
  3. Абсорбционный способ осушки газа. Достоинства и недостатки. Принципиальная схема.
  4. Абсорбционный способ подготовки газа. Технологическая схема, назначение и устройство аппаратов. Параметры работы,
  5. Агрегатные состояния вещества
  6. Агрегатные состояния вещества. Характер теплового движения в этих состояниях. Особенности теплового движения в различных агрегатных состояниях вещества.
  7. Адиабатный процесс. Уравнение адиабаты идеального газа. Работа идеального газа при адиабатическом изменении его объема.
  8. Акты органов записи актов гражданского состояния
  9. Анализ движения, технического состояния и эффективности использования основных средств
  10. Анализ показателей движения, состояния и использования ОС.

Состояние данной массы газа полностью определено, если известны его давление, температура и объем. Эти величины называют параметрами состояния газа. Уравнение, связывающее параметры состояния, называют уравнением состояния.
Для произвольной массы газа состояние газа описывается уравнением Менделеева—Клапейрона: pV = mRT/M, где р — давление, V — объем, m — масса, М — молярная масса, R — универсальная газовая постоянная.

Уравнение, устанавливающее связь между давлением, объемом и температурой газов, было получено французским физиком Бенуа Клапейроном (1799—1864). В форме (26.7) его впервые применил великий русский ученый Дмитрий Иванович Менделеев (1834—1907), поэтому уравнение состояния газа называется уравнением Менделеева — Клапейрона.

Уравнение Менделеева—Клапейрона показывает, что возможно одновременное изменение трех параметров, характеризующих состояние идеального газа. Однако многие процессы в газах, происходящие в природе и осуществляемые в технике, можно рассматривать приближенно как процессы, в которых изменяются лишь два параметра. Особую роль в физике и технике играют три процесса: изотермический, изохорный и изобарный.
Изопроцессом называют процесс, происходящий с данной массой газа при одном постоянном параметре — температуре, давлении или объеме. Из уравнения состояния как частные случаи получаются законы для изопроцессов.
Изотермическим называют процесс, протекающий при постоянной температуре. Т = const. Он описывается законом Бойля—Мариотта: pV = const. Для данной массы газа произведение давления на объем есть величина постоянная.
Изохорным называют процесс, протекающий при постоянном объеме. Для него справедлив закон Шарля: при V = const, p/T = const.. Для данной массы газа отношения давления к температуре есть величина постоянная.
Изобарным называют процесс, протекающий при постоянном давлении. Уравнение этого процесса имеет вид V/T = const при р = const и называется законом Гей-Люссака:для данной массы газа отношения объема к температуре есть величина постоянная.
Все процессы можно изобразить графически (рис. 15)

 

Фотоэффект и его законы. Уравнение Эйнштейна для фотоэффекта и постоянная Планка. Применение фотоэффекта в технике.



В 1900 г. немецкий физик Макс Планк высказал гипотезу: свет излучается и поглощается отдельными порциями — квантами (или фотонами). Энергия каждого фотона определяется формулой Е = hv, где h — постоянная Планка, равная , v — частота света. Гипотеза Планка объяснила многие явления: в частности, явление фотоэффекта, открытого в 1887 г. немецким ученым Генрихом Герцем и изученного экспериментально русским ученым А. Г. Столетовым. Фотоэффект — это явление испускания электронов веществом под действием света.

В результате исследований были установлены три закона фотоэффекта.
1. Сила тока насыщения прямо пропорциональна интенсивности светового излучения, падающего на поверхность тела.
2. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности.
3. Если частота света меньше некоторой определенной для данного вещества минимальной частоты, то фотоэффекта не происходит.

Зависимость фототока от напряжения показана на рисунке 51.

Теорию фотоэффекта создал немецкий ученый А. Эйнштейн в 1905 г. В основе теории Эйнштейна лежит понятие работы выхода электронов из металла и понятие о квантовом излучении света. По теории Эйнштейна фотоэффект имеет следующее объяснение: поглощая квант света, электрон приобретает энергию. При вылете из металла энергия каждого электрона уменьшается на определенную величину, которую называют работой выхода (Авых). Работа выхода — это работа, которую необходимо затратить, чтобы удалить электрон из металла. Максимальная энергия электронов после вылета (если нет других потерь) имеет вид: . Это уравнение носит название уравнения Эйнштейна.



Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Простейшим таким прибором является вакуумный фотоэлемент. Недостатками такого фотоэлемента являются: слабый ток, малая чувствительность к длинноволновому излучению, сложность в изготовлении, невозможность использования в цепях переменного тока. Применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.

Существуют полупроводниковые фотоэлементы, в которых под действием света происходит изменение концентрации носителей тока. Они используются при автоматическом управлении электрическими цепями (например, в турникетах метро), в цепях переменного тока, в качестве невозобновляемых источников тока в часах, микрокалькуляторах, проходят испытания первые солнечные автомобили, используются в солнечных батареях на искусственных спутниках Земли, межпланетных и орбитальных автоматических станциях.

С явлением фотоэффекта связаны фотохимические процессы, протекающие под действием света в фотографических материалах.
Билет 17.



1. Модель строения жидкостей. Насыщенные и ненасыщенные пары. Зависимость давления насыщенного пара от температуры. Кипение. Влажность воздуха и её измерение. Точка росы.

Жидкость — вещество в состоянии, промежуточном между твердым и газообразным. Свойства жидкостей. Жидкости легко меняют свою форму, но сохраняют объем. В обычных условиях они принимают форму сосуда, в котором находятся.

Строение жидкостей. Свойства жидкостей объясняются тем, что промежутки между их молеку­лами малы: молекулы в жидкостях упакованы так плотно, что расстояние между каждыми двумя молекулами меньше размеров молекул. Молекула жидкости колеблется около положения временного равновесия, сталкиваясь с другими молекулами из ближайшего окружения. Время от времени ей удается совершить «прыжок», чтобы покинуть своих соседей из ближайшего окружения и продолжать совершать колебания уже среди других соседей. Время оседлой жизни молекулы воды, т. е. вре­мя колебания около одного положения равновесия при комнатной температуре, равно в среднем 10"11 с. Время одного колебания значительно меньше — 10~,2-10~13 с.

Поскольку расстояния между молекулами жидкости малы, то попытка уменьшить объем жид­кости приводит к деформации молекул, они начинают отталкиваться друг от друга, чем и объ­ясняется малая сжимаемость жидкости. Текучесть жидкости объясняется тем, что «прыжки» молекул из одного оседлого положения в другое происходят по всем направлениям с одинаковой частотой.

Насыщенный и ненасыщенный пар

Если сжимать газ в сосуде при постоянной температуре, то при некотором его объеме в сосуде появится жидкость и перестанет меняться давление, так как концентрация молекул над жидкостью станет постоянной за счет наступления динамического равновесия между жидкостью и паром. Пар, находящийся в динамическом равновесии со своей жидкостью, называется насыщенным.Под динамическим равновесием жидкости и пара понимают такое их состояние, когда число молекул, покидающих поверхность жидкости, равно в среднем числу молекул пара, возвращающихся за то же время в жидкость. Название «насыщенный» подчеркивает, что в данном объеме при данной температуре не может находиться большее количество пара.

Зависимость давления насыщенного пара от температуры.

Давление насыщенного пара зависит от температуры, но не зависит от объема.

Если в замкнутом сосуде нагревается жидкость, то с ростом температуры в пространстве над жидкостью растет концентрация молекул n и их средняя энергия , поэтому давление растет нелинейно (рис. 3).

Рис. 3

Когда вся жидкость в сосуде превратится в пар, то давление начнет расти прямо пропорционально температуре T, как давление идеального газа

   

Кипение. Температура кипения.

Кипение – это процесс интенсивного парообразования, происходящий как со свободной поверхности жидкости, так и по всему объему жидкости внутрь образующихся в ней пузырьков пара.

Кипение начинается при температуре, когда давление насыщенного пара внутри мельчайших пузырьков воздуха, которые всегда имеются внутри жидкости, начинает превышать давление вокруг этих пузырьков. Оно равно сумме атмосферного и гидростатического давлений. При этом пузырьки начинают расти. Из-за этого растет и архимедова (выталкивающая) сила, которая поднимает их вверх, где они лопаются, выбрасывая пар. При заданном давлении над кипящей жидкостью температура системы «жидкость–пар» постоянна для данного вещества и называется температурой кипения. Пока вся жидкость в сосуде не выкипит, температура жидкости постоянна.

Температура кипения повышается с ростом внешнего давления по закону изменения давления насыщенного пара от температуры.

Влажность воздуха -физическая величина, характеризующая содержание в воздухе водяного пара. Относительная влажность воздуха – это отношение парциального давления (или концентрации молекул) водяного пара, содержащегося в воздухе при данной температуре, к давлению (концентрации) насыщенного пара при той же температуре. Выражается:

Относительная влажность воздуха показывает, насколько водяной пар в данных условиях близок к насыщению. Именно от этого зависит интенсивность испарения воды и потеря влаги живыми организмами. Для человека наиболее благоприятна относительная влажность, равная 40–60%.

 

Измерение влажности

Для измерения влажности используют зависимость различных параметров веществ от влажности воздуха. Такими параметрами могут служить, например, скорость испарения воды (психрометр, рис. 5), температура выпадения росы при локальном охлаждении воздуха (гигрометр, рис. 6), удлинение волоса при заданной нагрузке (волосяной гигрометр), сопротивление полупроводников (электронный измеритель влажности).

Рис. 5 Рис. 6

С помощью гигрометра измеряют точку росы – температуру, до которой необходимо охладить воздух, чтобы содержащийся в нем водяной пар, остывая, стал насыщенным. Начиная с этой температуры, охлаждение воздуха сопровождается появлением капелек росы на зеркальном сосуде, температуру которого понижают, прокачивая грушей воздух через легкокипящую жидкость (рис. 6).

С помощью психрометра фиксируют разницу температур двух термометров – сухого и влажного (рис. 5). По этой разнице и температуре сухого термометра устанавливают влажность воздуха по психрометрической таблице.

2.Законы отражения и преломления света. Полное отражение света. Линза. Формула тонкой линзы. Оптические приборы. Оптические кабели на ж/д.

На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается, а часть проникает во вторую среду и при этом преломляется. Луч АО носит название падающий луч, а луч OD – отраженный луч (см. рис. 1.3). Взаимное расположение этих лучей определяют законы отражения и преломления света.

Рис. 1.3. Отражение и преломление света.

Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения.

Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения.

Закон отражения света:

1. Угол падения равен углу отражения.
α=γ
2. Падающий луч, луч отраженный и перпендикуляр, восстановленный в точке падения луча, лежат в одной плоскости.

Преломление света– это изменение направления распространения света при прохождении через границу раздела двух сред.

Закон преломления света.
1. Отношение синуса угла падения к синусу угла преломления для двух данных сред есть величина постоянная


где n – это относительный показатель преломления (иначе показатель преломления второй среды относительно первой)
2. Луч падающий и луч преломленный лежат в одной плоскости с перпендикуляром к поверхности раздела двух сред, восстановленным в точке падения луча.
Показатель преломления

Физический смысл относительного показателя преломления (иначе показателя преломления второй среды относительно первой):
он показывает во сколько раз скорость света в той среде, из которой луч выходит, больше скорости света в той среде, в которую он входит.

Кроме того, каждая среда, через которую проходит луч света, характеризуется абсолютным показателем преломления:


Абсолютный показатель преломления - это показатель преломления среды относительно вакуума.
Он равен отношению скорости света в вакууме к скорости света в данной среде.
Среда с меньшим абсолютным показателем преломления называется оптически менее плотной средой.
Для вакуума (воздуха) абсолютный показатель преломления среды = 1.
Таким образом, вакуум обладает наименьшей оптической плотностью.

Полное внутреннее отражение наблюдается при переходе света из среды оптически более плотной в оптически менее плотную среду.

Угол падения, при котором свет не преломляется в другую среду, а отражается и скользит вдоль раздела двух сред (т.е. угол преломления равен 900), называется предельным углом полного отражения.

Для стекла предельный угол полного отражения равен 420, для воды 490

 

  Линзой называют прозрачное для света тело, ограниченное двумя сферическими поверхностями.
Собирающие Рассеивающие
выпуклые линзы (середина линз толще краев). вогнутые линзы.(края толще середины).
обозначение: обозначение:

 

  Линзу, у которой толщина пренебрежимо мала по сравнению с радиусами кривизны поверхностей, ограничивающих линзу, называют тонкой
  Основные понятия, используемые для описания хода лучей через линзы Главная оптическая ось - прямая, проходящая через центры кривизны С 1 и С 2. Оптический центр линзы - центральная точка О , через которую лучи походят, не изменяя направление.
  1. Фокус линзы ( F ) - точка на главной оптической оси, в которой пересекаются после преломления лучи (или их продолжения), падающие на линзу параллельно главной оптической оси. У любой линзы - два фокуса.
Собирающая линза Рассеивающая линза
Фокусы являются действительными, т.к. пересекаются сами лучи Фокусы являются мнимыми, т.к. пересекаются продолжения лучей
  1. Фокусное расстояние F - расстояние от оптического центра (точка О ) до фокуса. У собирающей линзы F > 0, у рассеивающей - F < 0.
  2. Фокальная плоскость - плоскость, проходящая через главный фокус линзы перпендикулярно оптической оси АА' .
  3. Оптическая сила линзы D - величина, обратная фокусному расстоянию: D =1/F
    У собирающей линзы D > 0, у рассеивающей D < 0. Единица измерения - диоптрия.

1 дптр = 1м -1 .

 

 
 
   

Формула тонкой линзы. Если расстояние от предмета до линзы обозначить через d, а расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде:

 

Величину D, обратную фокусному расстоянию. называют оптической силой линзы. Единица измерения оптической силы является 1 диоптрия (дптр). Диоптрия – оптическая сила линзы с фокусным расстоянием 1 м:

1 дптр = м–1.
 
 

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.

Величины d и f также подчиняются определенному правилу знаков:

  • d > 0 и f > 0 – для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;
  • d < 0 и f < 0 – для мнимых источников и изображений.

Применение геометрической оптики, т.е. применение линз и зеркал.

1. Фотоаппарат;

2. Фотоувеличитель;

3. Микроскоп;

4. Телескоп;

5. Проектор;

6. Волоконно-оптическая связь.

Разработка световодных систем и их опытная эксплуатация на железнодорожном транспорте началась в начале 80-х годов. В этих системах связи сигналы, несущие информацию, передают по оптическим световодам, которые представляют собой тонкие нити специальной конструкции, изготовленные из диэлектрического материала, прозрачного для применяемого излучения. Волоконные световоды из особо чистого кварцевого стекла называются оптическими волокнами и составляют основу оптических кабелей.


Дата добавления: 2015-04-18; просмотров: 26; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
МЕХАНИЧЕСКИЕ ВОЛНЫ | Билет 18. 1.Модель строения твёрдых тел
lektsii.com - Лекции.Ком - 2014-2018 год. (0.019 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты