Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


СИНТЕЗ ПИРИМИДИНОВЫХ МОНОНУКЛЕОТИДОВ.




Сначала образуется сначала циклическая структура пиримидинового азотистого основания, и только затем присоединяется рибозо-фосфат.

Первая реакция синтеза пиримидиновых монуклеотидов приводит к образованию карбамоилфосфата. Одна из молекул АТФ является донором фосфата.

Оротовая кислота – первое азотистое основание на пути синтеза пиримидинов – общий предшественник остальных пиримидинов. У многих живых организмов для синтеза оротовой кислоты требуется три фермента. У человека же все реакции образования оротата катализирует один-единственный фермент, в составе которого находятся три активных центра. Оротовая кислота затем превращается в оротидинмонофосфат (ОМФ). Далее ОМФ декарбоксилируется, и образуется УМФ. Обе эти реакции катализирует один фермент с двумя активными центрами.

Другие пиримидиновые нуклеотиды можно рассматривать как производные УМФ. Для ЦМФ источником NH2-группы является амидная группировка глутамина.

Ферменты обмена пиримидиновых нуклеотидов способны распознавать в субстрате не только азотистое основание, но и количество остатков фосфорной кислоты. Как показано на схеме, цитидиновые нуклеотиды образуются только на основе трифосфатной формы.

Субстратами для синтеза РНК являются АТФ, ГТФ, ЦТФ, УТФ - рибонуклеотиды, а для синтеза ДНК – нуклеотиды, содержащие дезоксирибозу - dНТФ (дезоксирибонуклеотиды). Дезоксирибоза – продукт восстановления рибозы. Дезоксирибонуклеотиды образуются из рибонуклеотидов под действием фермента НДФ-редуктазы.

Источником водорода является фермент НДФ-редуктаза, содержащий две SH-группы. Регенерация восстановленной формы НДФ-редуктазы происходит с помощью цепи реакций, где непосредственным донором водорода является специальный белок – тиоредоксин, который получает два атома водорода от трипептида глутатиона, переходящего при этом в окисленную форму. Последующее восстановление окисленного

глутатиона с помощью фермента глутатионредуктазы, использующей для этого НАДФ.Н2

Так образуются все dНДФ, в том числе и dУДФ, однако в состав ДНК он не входит, а преобразуется в тимидиловые нуклеотиды.

ТМФ может образоваться как в дезоксиформе (dТМФ), так и в окси- - ТМФ. Реакцию образования (d)ТМФ катализирует фермент тимидилатсинтетаза,в состав ее кофермента входит ТГФК. Этот фермент – мишень для многих фармакологических препаратов. Постоянно тимидиловые нуклеотиды необходимы только для синтеза ДНК, поэтому угнетение этого фермента тормозит деление клеток, но не влияет на скорость синтеза информационной РНК (и-РНК) и белков. Ингибиторы тимидилатсинтетазы применяются в терапии рака.

Существуют 2 основных группы таких веществ:

Конкурентные ингибиторы - вещества, похожие на субстрат. Например, его производное - dУМФ-5-фторурацил.

Вещества, похожие на кофермент тимидилатсинтазы - ТГФК. Например, антивитамин ФК – препарат метатрексат.

Образовавшийся (d)ТМФ подвергается фосфорилированию:

(d)ТМФ Þ (d)ТДФ Þ (d)ТТФ.

Остальные мононуклеотиды могут быть использованы для синтеза ДНК только в трифосфатной дезоксиформе: dАТФ, dГТФ, dЦТФ.

 

56.распад пуриновых нуклеозидов. Образовавшиеся при гидролизе пуриновые мононуклеозиды – аденозин и гуанозин подвергаются ферментативному распаду в организме чел-ка вплоть до образования конечного продукта – мочевой к-ты, которая выводится с мочой из организма. У чел-ка, приматов, большинства животных, у птиц и некоторых рептилей мочевая к-та является конечным продуктом пуринового обмена; у др. рептилий и млекопитающих мочевая к-та расщепляется до аллантоина, а у рыб до аллантоиновой к-ты и мочевины.

Начальные этапы р-и распада пиримидиновых нуклеотидов катализируются специфическими ф-ми; конечными продуктами р-и является СО2,NH3, мочевина, бета-аланин и бетааминоизомаслянная к-та. Гидролитический путь распада пиримидинов является главным путем образования бета-аланина, который может служить источником для синтеза ансерина, корновина и коэнзима.

 

57.Нуклеиновые кислоты встречаются в организме не в свободном виде, а в составе нуклеопротеинов.

Молекулы нуклеиновых кислот заряжены отрицательно. Белковые компоненты нуклеопротеинов - положительно, потому что в них много аргинина и лизина. Связи между нуклеиновыми кислотами и белками - ионные.

Нуклеиновые кислоты - гетерополимеры, их мономерами являются мононуклеотиды. Мононуклеотид состоит из азотистого основания+рибоза у РНК (или дезоксирибоза у ДНК) - вместе они составляют нуклеозид, и остатка фосфорной кислоты.

БИОЛОГИЧЕСКАЯ РОЛЬ НУКЛЕИНОВЫХ КИСЛОТ.

1. ДНК: хранение генетической информации.

2. РНК:

а) хранение генетической информации у некоторых вирусов;

б) реализация генетической информации: и-РНК (м-РНК) - информационная (матричная), т-РНК (транспортная), р-РНК (рибосомальная)

в) некоторые молекулы РНК способны катализировать реакции гидролиза 3’,5’-фосфодиэфирной связи в самой молекуле РНК. Такие РНК называют рибозимами.

58. Синтез ДНК называется репликацией. Направление фосфодиэфирных связей одной из синтезируемых полинуклеотидных цепей ДНК совпадает с направлением синтеза (5'--->3'), поэтому она синтезируется непрерывно и сразу целиком. А у другой - не совпадает (3'--->5'). Поэтому она синтезируется частями. Эти части называются "фрагменты Оказаки". Синтезировать фрагменты Оказаки de novo (с нуля) ДНК-полимеразы не могут, поэтому для синтеза каждого фрагмента нужна "затравка" - праймер. Праймер - это кусочек цепи РНК. Синтез праймеров катализируют специальные ферменты - праймазы (это один из вариантов РНК-полимераз). Синтез РНК происходит на определенных участках молекулы ДНК и называется транскрипцией. В цепи ДНК существуют специальные участки: промоторы, которые указывают на начало транскрипции и терминаторы, указывающие на конец транскрипции. При транскрипции образуется высокомолекулярный предшественник РНК - первичный транскрипт. Затем здесь же, в ядре клетки, идет постсинтетическая модификация РНК - сплайсинг. Этот процесс катализируют ферменты эндонуклеазы - из первичного транскрипта вырезаются интроны. Оставшиеся экзоны сшиваются РНК-лигазами. Далее к 5'-концу молекулы РНК присоединяется 7-метил-ГТФ (КЭП-фрагмент)- этот процесс называется "кэпирование". К 3'-концу присоединяется полиадениловый "хвост" (полиАМФ) - реакцию катализирует полиаденилатполимераза.

Особенностью посттранскрипционной модификации рибосомальной РНК (р-РНК) является метилирование азотистых оснований.

При синтезе транспортной РНК (т-РНК) к концу каждой молекулы присоединяется последовательность из трех мононуклеотидов: ЦМФ-ЦМФ-АМФ (ЦЦА). Эта последовательность необходима для присоединения аминокислоты к т-РНК.

СИНТЕЗ МОНОНУКЛЕОТИДОВ

Для синтеза нуклеотидов требуется активная форма рибозо-фосфата - фосфорибозилпирофосфат (ФРПФ).

Особенностью синтеза пуриновых нуклеотидов является то, что их структура пуринового азотистого основания постепенно достраивается на рибозофосфате.

При синтезе пиримидиновых мононуклеотидов сначала образуется циклическа структура азотистого основания, а затем в готовом виде присоединяется к рибозофосфату.

 

62. Транскрипция – пр-сс биосинтеза всех видов РНК на матрице ДНК, который протекает в ядре. Определенный уч-к молекулы ДНК деспирализируется, водородные связи м-у цепочками разрушаются под действием ф-ов. На одной цепи ДНК, как на матрице, по принципу комплементарности из нуклеотидов синтезируется РНК-копия. В зависимости от участка ДНК таким образом синтезируются р-, т- и и-РНК.

Ц-А-Г-Т-Г-А

УЧАСТОК ДНК

Г-Т-Ц-А-Ц-Т

 

Ц-А-Г-У-Г-А УЧАСТОК МОЛЕКУЛЫ и-РНК.

После синтеза и-РНК она выходит из ядра и направляется в цитоплазму к месту синтеза белка на рибосомах.

 

63. Генетический код. А.К. последовательность в молекуле белка зашифрована в виде нуклеотидной последовательности в молекуле ДНК и наз-ся ген-им кодом. Уч-к ДНК, ответственный за синтез одного белка наз-ся геном.

Хар-ка генетического кода.

Триплетность: каждой а.к. соответствует сочетание только трех нуклеотидов. Всего таких сочетаний 64. Из них 61 код смысловой, т.е. соответствует 20 а.к., а три кода бессмысленные – стоп-коды, которые не соответствуют а.к., а заполняют промежутки м-у генами.

Однозначность – каждый триплет соответствует только одной а.к..

Код вырожден – каждая а.к. имеет больше чем один код. Например у а.к. глицин – 4 кода: ЦЦА, ЦЦГ, ЦЦТ, ЦЦЦ, чаще у а.к. из 2-3.

Универсальность – все живые организмы имеют один и тот же генетический код а.к..

Неприрывность – м-у кодами нет промежутков.

Неперекрываемость – конечный нуклеотид одного кода не может служить началом другого.

 

64. Трансляция – процесс синтеза полипептидных цепей, осуществляемый на рибосомах, где и-РНК является посредником в передачи ген-ой инф-и о первичной структуре белка.

Биосинтез белка состоит из ряда р-й.

Активирование и кодирование а.к.. т-РНК имеет вид клеверного листа, в центральном листе которого располагается триплетный антикодон, соответствующий коду определенной а.к. и кадону на и-РНК. Каждая а.к. соединяется с соответствующей т-РНК за счет энергии АТФ. образуется комплекс т-РНК-а.к., который поступает на рибосомы.

Образование комплекса и-РНК-рибосома, и-РНК соединяется в цитоплазме с рибосомой на гр. ЭПС.

Сборка полипептидной цепи.Т-РНК с а.к. по принципу комплементарности антикодона с кодоном соединяется с и-РНК и входит в рибосому. В пептидном центре рибосомы м-у двумя а.к. образуется пептидная связь, а освободившаяся т-РНК покидает рибосому. При этом и-РНК каждый раз продвигается на один триплет, внося новую т-РНК – а.к. и вынося новую освободившуюся т-РНК. Весь пр-сс обеспечивается энергией АТФ. одна и-РНК может соединятся с несколькими рибосомами, образуя полисому, где идет одновременно синтез многих молекул одного белка. Синтез заканчивается, когда на и-РНК начинаются бессмысленные кодоны (не соответствуют а.к., а заполняют промежутки м-у генами). Рибосомы отделяются от и-РНК, с них снимаются полипептидные цепи. Т.к. весь синтез протикает на гЭПС, то образовавшиеся полипептидные цепи поступают в канальца ЭПС, где приобретают окончательную стр-у и превращаются в молекулы белка. Все р-и синтеза катализируются спец. ф-ми при участии АТФ. Скорость синтеза очень велика и зависит от длины полипептида. Например, в рибосоме киш. Палочки белок из 300 а.к. синтезируется 15-20 с..

Суммарные р-и биосинтеза белка.

ДНК (транскрипция в ядре) ---- и-РНК

Кодирование, активирование – т-РНК (под действием АТФ в цитоплазме) ---- т-РНК-а.к..

и-РНК + рибосомы

(трансляция на гЭПС) --- белок.

т-РНК-а.к.

 


Поделиться:

Дата добавления: 2015-04-21; просмотров: 219; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты