Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Электрическое сопротивление




Как уже говорилось, обозначается электрическое сопротивле­ние буквой R. Единицей измерения сопротивления является Ом:

Электрическое сопротивление проводника это противодейст­вие, которое атомы или молекулы проводника оказывают направленному перемещению зарядов.

Сопротивление R зависит от длины проводника l, площади поперечного сечения S и материала проводника р:

 

 

Где— удельное сопротивление проводника, зависящее от свойства материала проводника.

 

Удельное сопротивление (р) — это сопротивление проводника из данного материала

длиной 1 м площадью поперечного сечения 1 мм2 при температуре 20 °С. Величина удельного сопротивления некоторых проводников приведена в Приложе­нии 4.

Единицей измерения удельного сопротивления является

 

Поскольку

 

Однако на практике сечение проводников выражают в мм2.

 

Удельное сопротивление проводника определяет область его применения. Так, например, для соединения источника с потре­бителем применяются металлические провода с малым удельным сопротивлением — алюминий, медь. Для обмоток реостатов на­гревательных приборов применяются сплавы с большим удель­ным сопротивлением — нихром, фехраль (при этом уменьшается длина проводника

Величину, обратную сопротивлению, называют проводимостью

 

Единицей проводимости является сименс

 

Элементы электрической цепи, характеризующиеся сопротив­лением R, называют резистивными, а промышленные изделия, предназначенные для выполнения роли сопротивления электри­ческому току, называются резисторами. Резисторы бывают регу­лируемые и нерегулируемые, проволочные и непроволочные, пленочные, композиционные и др.

Сопротивление проводников зависит от их температуры.

Сопротивление проводника при любой температуре (с доста­точной степенью точности при изменении температуры в преде­лах 0-;-100 °С) можно определить выражением

 

где R2сопротивление проводника при конечной температуре tO2; R1 — сопротивление проводника при начальной температуре tO1, а — температурный коэффициент сопротивления.

Температурный коэффициент сопротивления определяет отно­сительное изменение сопротивления проводника при изменении его температуры на 1°С. Единицей измерения температурного коэффициента сопротивления является

 

 

Для различных проводников температурный коэффициент сопротивления имеет различные значения (Приложение 4).

Для металлических проводников (Приложение 4) температурный коэффициент сопротивления а положителен, т. е. с ростом температуры сопротивление металлических проводников увеличивается (2.9). Объясняется это тем, что при нагревании увеличивается подвижность атомов и молекул металла, а следова­тельно, и число столкновений с ними электрических зарядов увеличивается. Таким образом, возрастает противодействие направленному перемещению этих зарядов, т. е. увеличивается со­противление металлического проводника.

Для проводников второго рода (электролитов) и угля температурный коэффициент сопротивления а отрицателен, т. е. с ростом температуры их сопротивление уменьшается (2.9). Объясняется это тем, что с повышением температуры ослабляются связи между положительно и отрицательно заряженными частицами, что приводит к усилению ионизации, обуславливающей электропроводность, т. е. уменьшается сопротивление электролитов и угля.

Для большинства электролитов , а для угля

 

Температурный коэффициент сопротивления а проводников определяет их применение. Например, такие сплавы, как константан и манганин, имеют малый температурный коэффициент сопротивления (Приложение 4), т. е. их сопротивление почти не зависит от температуры, поэтому их применяют в качестве мате­риала для изготовления шунтов и добавочных сопротивлений, служащих для расширения пределов измерения амперметров и вольтметров, на точность которых не должна влиять температура. При понижении температуры некоторых металлов и сплавов до очень низких значений, порядка нескольких градусов Кельвина

(0ОК ≈ —273 °С), возникает явление сверхпроводимости.

Сверхпроводником называют проводник, сопротивление которого L практически равно нулю.

В сверхпроводнике совершенно не выделяется тепло при про­хождении тока, так как электроны при направленном движении не встречают препятствий. В нем невозможно существование магнитного поля.

Следует ожидать широкого применения сверхпроводников в электротехнике в будущем.

7. Понятие об ЭДС.

 

Источник электрической энергии осуществляет направленное перемещение электрических зарядов по всей замкнутой цепи (рис. 2.3).

Энергия W, которую затрачивает или может затратить источник на перемещение единицы положительного заряда по всей замкнутой цепи, характеризует - электродвижущую силу источника Е ЭДС):

 

Из определения следует, что ЭДС является энергетической ха­рактеристикой источника тока, а не силовой, как можно было бы решить по названию «электродвижущая сила». Единицей измерения ЭДС является вольт:

 

 


Поделиться:

Дата добавления: 2015-04-21; просмотров: 103; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты