Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Индукционные тахометры, получение математической модели, анализ погрешностей и особенности конструкции




Индукционные тахогенераторы редко применяются как измерительные приборы вследствие больших погрешностей, но они незаменимы в качестве датчиков угловой скорости в системах автоматики.

 

 

 

Рис. 6. Кинематические схемы магнитоиндукционных тахометров: а – с полым цилиндром; б – с диском; 1 – чувствительный элемент; 2 –магнит; 3 – магнитопровод.

К ним относятся магнитоиндукционные тахо­метры, которые бывают двух типов: с чувствительным элементом в виде тонкостенного электропроводящего полого цилиндра 1 (рис. 6. а), помещенного в зазоре между вращаемым магни­том 2 и магнитопроводом 3, или с чувствительным элементом в виде диска 1 (рис. 6. б), помещенного в зазоре между вращаемыми цилиндрическими магнитами 2. Обычно постоянные маг­ниты вращаются с частотой, пропорциональной измеряемой час­тоте вращения вала двигателя, а чувствительные элементы (ци­линдры и диски) закреплены на самостоятельных осях и могут поворачиваться лишь на некоторый угол, ограниченный спираль­ной противодействующей пружиной П.

При вращении магнитной системы в теле чувствительного эле­мента (ЧЭ) за счет магнитной индукции наводится ЭДС, прямо пропорциональная скорости вращения магнита:

Е=k1nm, (3.1)

где k1 - коэффициент, зависящий от индукции магнитного пото­ка, пронизывающего ЧЭ; пм — угловая скорость вращения магнита.

ЭДС, индуцированная в ЧЭ, вызывает появление в нем индук­ционных токов i, величина которых зависит от ЭДС, вызвавшей их, числа пар полюсов магнита, размеров и материалов ЧЭ. Ин­дукционные токи, в свою очередь, создают магнитное поле. В ре­зультате взаимодействия магнитных полей ЧЭ и постоянных маг­нитов возникает вращающий момент, стремящийся повернуть ЧЭ вслед за вращающимся магнитом. Вращающий момент, действую­щий на элемент, пропорционален величине индуцированного в нем вихревого тока, а следовательно, и скорости вращения маг­нита:

(3.2)

где к2 — постоянный коэффициент пропорциональности.

Под действием вращающего момента ЧЭ поворачивается и за­кручивает пружину П, создающую противодействующий момент, пропорциональный углу закручивания пружины:

Мпр=сa, (3.3)

где с - жесткость пружины; a — угол закручивания пружины.

На одной оси с ЧЭ укреплена стрелка, угол отклонения кото­рой пропорционален угловой скорости вращения постоянного маг­нита.

Угол поворота стрелки прибора определяется равенством мо­ментов откуда

MВРПР,(3.4)

где к=к2— коэффициент, зависящий от жесткости пружины, конструкции и материала магнита и ЧЭ.

На самолетах и вертолетах находят применение магнитоиндук­ционные тахометры типа ТЭ (ТЭ-15, 2ТЭ-15-1, ТЭ-5-2М и др.) со шкалой, отградуированной в оборотах в минуту, и типа ИТЭ (ИТЭ-1, ИТЭ-2 и др.) со шкалой, отградуированной в процентах. Разница в устройстве их незначительна.

В комплекты тахометров этого типа могут входить один-два датчика и один показывающий при­бор, либо один датчик и один-два указателя. В частности, ком­плект тахометра может состоять из одного датчика ДТЭ-1 и од­ного показывающего прибора ИТЭ-1. Соответственно датчик ДТЭ-2, Д-ЗМ или Д-3-2 должен работать в системе измерения оборотов совместно с двумя измерителями типа ИТЭ-1 (ИТЭ-1Т) или с показывающим прибором ИТЭ-2 (ИТЭ-2Т), объединяющим в одном корпусе две измерительные системы.

Конструкция датчика Д-3-2 представлена на рис. 7.

 

 

Рис. 7 Датчик магнитоиндукционного тахометра Д – 3 – 2: 1 – хвостовик; 2, 6 –крышки; 3, 7 – шарикоподшипники; 4 – ротор; 5 – статор; 8 – болт.

 

Датчик представляет собой трехфазный генератор переменно­го тока с четырехполюсным постоянным магнитом - ротором 4.

Ротор напрессован на валу, заканчивающемся квадратным хвостовиком 1, которым вал генератора соединяется с приводом вала авиадвигателя. Эта передача обладает достаточной гибко­стью и компенсирует скручивающие колебания и перекосы, кото­рые могут возникнуть при монтаже датчика.

Ротор вращается в шарикоподшипниках 3 и 7, которые уста­новлены в крышках 2 и 6.

Статор 5 датчика набран из пластин электротехнической ста­ли. В целях уменьшения потерь в статоре от вихревых токов пластины изолированы одна от другой клеем.

Обмотка статора - трехфазная, выполнена из медного провода. Фазовые обмотки соединены звездой.

Магнитоиндукционный тахометр является дистанционным при­бором. Синхронная дистанционная передача состоит из трехфаз­ного генератора переменного тока (датчика), расположенного на авиадвигателе, трехпроводной линии и синхронного двигателя, размещенного в указателе.

 

Рис. 8.Электрокинематическая схема тахометра: 1 – плата с магнитами; 2 – диск демпфера; 3 – пружина; 4 – диск; 5 термомагнитный шунт; 6 – постоянные магниты; 7 – пружина; 8 – крестообразный магнит; 9 – гистерезисные диски; 10 – обмотка двигателя; 11 – дисковая плата; 12 – ось; 13 – шала; 14 – стрелка; 15 – якорь; 16– обмотка статора.

 

 

Рис. 9. Кинематическая схема показывающего прибора тахосигнальной аппаратуры.

 

 

Рис. 10. Показывающий прибор тахометра ИТЭ – 1:

1 – плата с магнитами; 2 – диск демпфера; 3 – пружина; 4 – диск; 5 – тесмомагнитный шунт; 6 – постоянные магниты; 7 – пружина; 8 – крестообразный магнит; 9 – гистерезисные диски; 10 – обмотка двигателя; 11 – дисковая плата;12 – ось; 13 – шкала; 14 –стрелка.

 

Совместное рассмотрение рисунков 8-10 позволяет изучить конструкцию показывающего прибора и работу комплекта магнитоиндукционного тахометра типа ИТЭ.

Показывающий прибор включает в себя два узла, смонтиро­ванные в одном корпусе, синхронный двигатель и измеритель­ную систему (тахометр).

Синхронный двигатель состоит из статора с трехфазной обмот­кой 10 и ротора, собранного из двух крестообразных магнитов 5 и трех гистерезисных дисков 9. Постоянные крестообразные маг­ниты насажены на вал свободно и могут поворачиваться относи­тельно вала на некоторый угол, так как соединяются с ним пружиной 7, через которую передают крутящий момент на вал син­хронного двигателя.

Это обеспечивает вхождение двигателя в синхронизм до того, как он разовьет полную мощность.

Гистерезисные диски 9 изготовляются из магнитотвердого ма­териала. В синхронном режиме работы диски взаимодействуют с вращающимся полем так же,как и постоянные магниты, но с меньшей силой взаимодействия.

Измерительная часть прибора состоит из магнитного узла с двумя дисковыми платами 11 с впрессованными в них шестью парами постоянных магнитов 6. На магниты надет термомагнит­ный шунт 5, предназначенный для компенсации температурной погрешности. Шунт выполнен из сплава, магнитная проницае­мость которого с возрастанием температуры уменьшается.

В воздушном зазоре между торцами противоположных полю­сов магнитов расположен чувствительный элемент - диск 4, изго­товленный из медно-марганцевого сплава с малым температур­ным коэффициентом.

Таким образом, магнитный узел укреплен на конце вала синх­ронного двигателя и вращается с синхронной скоростью, а чувст­вительный элемент - диск связан, через ось 12 со стрелкой 14, перемещающейся по шкале 13.

Для уменьшения колебаний стрелки около установившегося положения в конструкции прибора предусмотрен демпфер, по устройству аналогичный измерительному узлу 11.

Платы 1 магнитного демпфера закреплены неподвижно. Меж­ду торцами шести пар неподвижных магнитов находится алюми­ниевый диск 2 демпфера, связанный с осью измерительного узла.

Взаимодействие наводимых в алюминиевом диске вихревых токов с магнитным потоком магнитов приводит к превращению энергии колебаний в тепловую и к повышению устойчивости стрелки прибора.

Тахометр ИТЭ-1 работает следующим образом. Напряжение статорной обмотки 16 генератора датчика с частотой, пропорцио­нальной частоте вращения ротора авиадвигателя, возбуждает в статорной обмотке 10 синхронного двигателя показывающего прибора вращающееся магнитное поле, которое приводит к намаг­ничиванию гистерезисных дисков двигателя. Гистерезисные дис­ки выполнены из ферромагнитного материала с большой коэрци­тивной силой, поэтому создаваемое ими магнитное поле из-за большого гистерезиса отстает на некоторый угол от намагничи­вающего поля статора.

В результате возникает вращающий момент дисков ротора двигателя, направление которого совпадает с направлением вра­щающегося поля статорных обмоток.

При частоте вращения ротора, близкой к синхронной, когда обороты ротора и поля статора становятся одинаковыми, посто­янные магниты 8 успевают взаимодействовать с полем статора, входят в синхронизм и, постепенно закручивая пружину 7, начи­нают воспринимать полную нагрузку.

В - синхронном режиме работы двигателя основной вращаю­щий момент создается в результате взаимодействия поля постоян­ных магнитов с вращающимся полем статора, а гистерезисные диски создают лишь незначительный дополнительный момент.

При резких увеличениях частоты вращения авиадвигателя, сле­довательно, и скорости вращения магнитного поля статора воз­можен переход двигателя в асинхронный режим работы. В этом случае полюсы постоянных магнитов вращаются с некоторым от­ставанием от полюсов поля статора. Гистерезисные диски помо­гают ротору следовать за магнитным полем статора и вводят по­стоянные магниты ротора в синхронную работу.

Ротор двигателя вращает магнитную систему 11 измеритель­ного узла. В результате взаимодействия полей магнитов 6 и диска 4 чувствительный элемент (диск) с закрепленной на его оси стрелкой 14 поворачивается и закручивает противодействую­щую пружину 5. Таким образом, угол поворота диска пропорцио­нален значению измеряемой частоты вращения. Демпфер, укреп­ленный на оси чувствительного элемента, успокаивает подвижную систему и облегчает снятие показаний стрелки указателя.

Указатели ИТЭ-2 предназначены для измерения частоты вра­щения валов двух двигателей или двух ступеней компрессора одного двигателя. В корпусе указателя ИТЭ-2 размещены два из­мерительных узла, аналогичные рассмотренным, движение кото­рых передается на две соосные стрелки. Магнитоиндукционный демпфер в них отсутствует. Демпфирование колебаний осуществ­ляется за счет моментов трения зубчатых передач.

К магнитоиндукционным тахометрам относится и тахометрическая сигнальная аппаратура (ТСА), которая может обеспечи­вать либо только выдачу дискретных сигналов соответствующих определенным частотам вращения вала (ТСА-12), либо выдачу дискретных сигналов и индикацию частоты вращения вала (ТСА-6). Конструкция показывающих приборов ТСА аналогична конструкции ИТЭ-1 (рис. 10). Отличие заключается лишь в наличии сигнального устройства, которое состоит из осветителей Л1, Л4 и фоторезисторов Bl, B4, разделенных между собой про­филированным диском. Диск укреплен на оси измерительного уз­ла. При изменении скорости вращения профильный диск повора­чивается, в результате меняется степень освещенности тех или иных фоторезисторов, включенных в схему управления, и тахо­метр выдает сигналы, соответствующие определенным частотам вращения, на исполнительные устройства.

Шкала показывающего прибора ИТЭ отградуирована в про­центах, измерительный предел - (0-110) %, цена деления -1%, погрешность измерения не превышает ±0,5% в рабочем диапазо­не шкалы от 60 до 100% и 1% - в остальном диапазоне.

Основная погрешность выдачи дискретных сигналов ТСА не превышает ±2%.

Датчики магнитоиндукционных тахометров не имеют методи­ческой погрешности.

Основная инструментальная погрешность указателя тахомет­ра определяется трением в подшипниках и ошибками градуиров­ки шкалы.

Дополнительные погрешности обусловлены прежде всего влия­нием температуры и вызываются изменением электрического со­противления чувствительного элемента, магнитной проводимости магнитопроводов и упругих свойств противодействующей пружи­ны. Конструктивная погрешность из-за изменения температуры окружающей среды частично компенсируется подбором материа­лов деталей. В частности, чувствительный элемент - диск изготов­ляется из марганцовистой меди (96,1% Сu, 3,9% Мn) с положи­тельным температурным коэффициентом. Противодействующая пружина из фосфористой бронзы и магниты из соответствующих сплавов имеют отрицательные температурные коэффициенты. Для компенсации остаточной температурной погрешности применяется температурный шунт 5, надетый на магниты 6. Шунт выполнен из сплава, магнитная проницаемость которого с возрастанием температуры уменьшается. Действие шунта заключается в сле­дующем. С увеличением температуры окружающей среды увели­чивается сопротивление токопроводящего диска 4 и уменьшается сила наведенного тока. Одновременно с этим уменьшается маг­нитная проницаемость шунта, который меньшую часть магнитно­го потока пропускает через себя, вследствие чего увеличивается магнитная индукция в зазоре измерительного магнитного узла. При этом сила взаимодействия постоянных магнитов 6 и токов в диске 4, аследовательно, и движущий момент практически остаются неизменными.


Поделиться:

Дата добавления: 2015-05-08; просмотров: 123; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты