Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


ПАРАМЕТР ОПТИМИЗАЦИИ. ВИДЫ ПАРАМЕТРОВ ОПТИМИЗАЦИИ. ТРЕБОВАНИЯ К ПАРАМЕТРУ ОПТИМИЗАЦИИ. ОБОБЩЕННЫЙ ПАРАМЕТР ОПТИМИЗАЦИИ




ПАРАМЕТРЫ ОПТИМИЗАЦИИ

Выбор параметров оптимизации (критериев оптимизации) является одним из главных этапов работы на стадии предварительного изучения объекта исследования, т.к. правильная постановка задачи зависит от правильности выбора параметра оптимизации, являющегося функцией цели.

Под параметром оптимизации понимают характеристику цели, заданную количественно. Параметр оптимизации является реакцией (откликом) на воздействие факторов, которые определяют поведение выбранной системы.

Реальные объекты или процессы, как правило, очень сложны. Они часто требуют одновременного учета нескольких, иногда очень многих, параметров. Каждый объект может характеризоваться всей совокупностью параметров, или любым подмножеством этой совокупности, или одним - единственным параметром оптимизации. В последнем случае прочие характеристики процесса уже не выступают в качестве параметра оптимизации, а служат ограничениями. Другой путь - построение обобщенного параметра оптимизации как некоторой функции от множества исходных.

ТРЕБОВАНИЯ К ПАРАМЕТРУ ОПТИМИЗАЦИИ

Параметр оптимизации - это признак, по которому оптимизируется процесс. Он должен быть количественным, задаваться числом. Множество значений, которые может принимать параметр оптимизации, называется областью его определения. Области определения могут быть непрерывными и дискретными, ограниченными и неограниченными. Например, выход реакции - это параметр оптимизации с непрерывной ограниченной областью определения. Он может изменяться в интервале от 0 до 100%. Число бракованных изделий, число зерен на шлифе сплава, число кровяных телец в пробе крови - вот примеры параметров с дискретной областью определения, ограниченной снизу.

Количественная оценка параметра оптимизации на практике не всегда возможна. В таких случаях пользуются приемом, называемым ранжированием. При этом параметрам оптимизации присваиваются оценки - ранги по заранее выбранной шкале: двухбалльной, пятибалльной и т. д. Ранговый параметр имеет дискретную ограниченную область определения. В простейшем случае область содержит два значения (да, нет; хорошо, плохо). Это может соответствовать, например, годной продукции и браку.

Итак, первое требование: параметр оптимизации должен быть количественным.

Второе требование: параметр оптимизации должен выражаться одним числом. Иногда это получается естественно, как регистрация показания прибора. Например, скорость движения машины определяется числом на спидометре. Часто приходится проводить некоторые вычисления. Так бывает при расчете выхода реакции. В химии часто требуется получать продукт с заданным отношением компонентов, например, А:В=3:2. Один из возможных вариантов решения подобных задач состоит в том, чтобы выразить отношение одним числом (1,5) и в качестве параметра оптимизации пользоваться значением отклонений (или квадратов отклонений) от этого числа.

Третье требование, связанное с количественной природой параметра оптимизации -однозначность в статистическом смысле. Заданному набору значений факторов должно соответствовать одно значение параметра оптимизации, при этом обратное неверно: одному и тому же значению параметра могут соответствовать разные наборы значений факторов.

Четвертым, наиболее важным требованием, требованием к параметрам оптимизации является его возможность действительно эффективной оценки функционирования системы. Представление об объекте не остается постоянным в ходе исследования. Оно меняется по мере накопления информации и в зависимости от достигнутых результатов. Это приводит к последовательному подходу при выборе параметра оптимизации. Так, например, на первых стадиях исследования технологических процессов в качестве параметра оптимизации часто используется выход продукта. Однако в дальнейшем, когда возможность повышения выхода исчерпан, начинают интересоваться такими параметрами, как себестоимость, чистота продукта и т. д.

Оценка эффективности функционирования системы может осуществляться как для всей системы в целом, так и оценкой эффективности ряда подсистем, составляющих данную систему. Но при этом необходимо учитывать возможность того, что оптимальность каждой из подсистем по своему параметру оптимизации «не исключает возможность гибели системы в целом». Это означает, что попытка добиться оптимума с учетом некоторого локального или промежуточного параметра оптимизации может оказаться неэффективной или даже привести к браку.

Пятое требование к параметру оптимизации - требование универсальности или полноты. Под универсальностью параметра оптимизации понимают его способность всесторонне охарактеризовать объект. В частности, технологические параметры

недостаточно универсальны: они не учитывают экономику. Универсальностью обладают, например, обобщенные параметры оптимизации, которые строятся как функции от нескольких частных параметров.

Шестое требование: желательно, чтобы параметр оптимизации имел физический смысл, был простым и легко вычисляем.

Требование физического смысла связано с последующей интерпретацией результатов эксперимента. Не представляет труда объяснить, что значит максимум извлечения, максимум содержания ценного компонента. Эти и подобные им технологические параметры оптимизации имеют ясный физический смысл, но иногда для них может не выполняться, например, требование статистической эффективности. Тогда рекомендуется переходить к

преобразованию параметра оптимизации. Преобразование, например типа агсБт у[у , может

сделать параметр оптимизации статистически эффективными (например, дисперсии становятся однородными), но остается неясным: что же значит достигнуть экстремума этой величины?

Второе требование, т. е. простота и легко вычисляемость, также весьма существенны. Для процессов разделения термодинамические параметры оптимизации более универсальны. Однако на практике ими пользуются мало: их расчет довольно труден.

Из приведенных двух требований первое является более существенным, потому что часто удается найти идеальную характеристику системы и сравнить ее с реальной характеристикой.

Виды параметров оптимизации

В зависимости от объекта и цели исследования пара­метры оптимизации могут быть весьма разнообразными. Чтобы ориентироваться в этом многообразии, введен некоторую классификацию (рисунок 1). Реальные ситуации, как правило, сложны. Они часто требуют одновременного учета нескольких, иногда очень многих, параметров. В принципе каждый объект может характеризоваться сразу всей совокупностью параметров, приведенных на рис. 1, или любым подмножеством из этой совокупности. Движение к оптимуму возможно, если выбран один единственный параметр оптимизации. Тогда прочие характеристики процесса уже не выступают в качестве параметров оптимизации, а служат ограниче­ниями. Другой путь – построение обобщенного параметра оптимизации как некоторой функции от множества исходных.

Прокомментируем некоторые элементы схемы.

Экономические параметры оптимизации, такие как прибыль, себестоимость и рентабельность, обычно исполь­зуются при исследовании действующих промышленных объектов, тогда как затраты на эксперимент имеет смысл оценивать в любых исследованиях, в том числе и лабо­раторных. Если цена опытов одинакова (см. «Ограниче­ния»), затраты на эксперимент пропорциональны числу опытов, которые необходимо поставить для решения дан­ной задачи. Это в значительной мере определяет выбор плана эксперимента.

Среди технико-экономических параметров наибольшее распространение имеет производительность. Такие пара­метры, как долговечность, надежность и стабильность, связаны с длительными наблюдениями. Имеется некото­рый опыт их использования при изучении дорогостоящих ответственных объектов, например радиоэлектронной ап­паратуры.

Почти во всех исследованиях приходится учитывать количество и качество получаемого продукта. Как меру количества продукта используют выход, например, процент выхода химической реакции, выход годных изделий. Показатели качества чрезвычайно разнообразны. В па­шей схеме они сгруппированы по видам свойств. Ха­рактеристики количества и качества продукта образуют группу технико-технологических параметров.

Под рубрикой прочие сгруппированы различные па­раметры, которые реже встречаются, но не являются менее важными. Сюда попали статистические параметры, используемые для улучшения характеристик случайных величин или случайных функций. В качестве примеров назовем задачи на минимизацию дисперсии случайной ве­личины, на уменьшение числа выбросов случайного про­цесса за фиксированный уровень и т. д. Последняя зада­ча возникает, в частности, при выборе оптимальных на­строек автоматических регуляторов или при улучшении свойств нитей (проволока, пряжа, искусственное волокно и др.).

С ростом сложности объекта возрастает роль психоло­гических аспектов взаимодействия человека или живот­ного с объектом. Так, при выборе оптимальной организа­ции рабочего места оператора параметром оптимизации может служить число ошибочных действий в различных возможных ситуациях. Сюда относятся задачи выработки условных рефлексов типа задачи «крысы в лабиринте».

При решении задач технической эстетики или сравне­нии произведений искусства возникает потребность в эсте­тических параметрах. Они основаны на ранговом подходе, который будет рассмотрен ниже.

 

3. ОБОБЩЕННЫЙ ПАРАМЕТР ОПТИМИЗАЦИИ

Путь к единому параметру оптимизации часто лежит через обобщение. Уже указывалось, что из многих откликов, определяющих объект, трудно выбрать один, самый важный. Если же это возможно, то попадают в ситуацию, описанную в предыдущей главе. В этой главе рассматриваются более сложные ситуации, где необходимо множество откликов обобщать в единый количественный признак. С таким обобщением связан ряд трудностей.

Каждый отклик имеет свой физический смысл и свою размерность. Чтобы объединить различные отклики, прежде всего приходится ввести для каждого из них некоторую безразмерную шкалу. Шкала должна быть однотипной для всех объединяемых откликов - это делает их сравнимыми. Выбор шкалы - не простая задача, зависящая от априорной информации об откликах, а также от той точности, с которой определяется обобщенный признак.

После построения для каждого отклика безразмерной шкалы, возникает следующая трудность - выбор правила комбинирования исходных частных откликов в обобщенный показатель. Единого правила не существует. Здесь можно идти различными путями, и выбор пути неформализован. Рассмотрим несколько способов построения обобщенного показателя.


 

Рисунок 1


4. Полный факторный эксперимент типа 2к

Первый этап планирования эксперимента для получения линейной модели основан на варьировании факторов на двух уровнях. В этом случае, если число факторов известно, можно сразу найти число опытов, необходимое для реализации всех возможных сочетаний уровней факторов.

Простая формула, которая для этого используется, N = 2к, где N – число опытов, к – число факторов, 2 – число уровней. В общем случае эксперимент, в котором реализуются все возможные сочетания уровней факторов, называется полным факторным экспериментом.

Если выбранная модель включает только линейные члены полинома и их произведения, то для оценки всех параметров модели используется план эксперимента с варьированием всех факторов на двух уровнях. Такие планы принято называть планами типа 2n, где 2n=N – число всех возможных опытов, n – количество варьируемых факторов.

Полный факторный эксперимент может быть предложен исследователю как один из способов построения математической модели (идентификации) недетерминированного объекта. Этот способ оказывается наиболее предпочтительным в тех случаях, когда отсутствует априорная информация для обоснования структуры модели с позиций физико-химических представлений процессов, происходящих в объекте, отсутствует количественная оценка степени влияния изучаемых факторов на выходную переменную объекта, его выходной показатель.

Нетрудно написать все сочетания уровней в эксперименте с двумя факторами. Напомним, что в планировании эксперимента используются кодированные значения факторов: +1 и –1 (часто для простоты записи единицы опускают). Условия эксперимента можно записать в виде таблицы, где строки соответствуют различным опытам, а столбцы – значениям факторов. Будем называть такие таблицы матрицами (репликами) планирования эксперимента.

Матрица планирования 22 для двух факторов показана в табл.

Номер опыта Матрица планирования Выход у
x1 x2
–1 –1 y1
+1 –1 y2
–1 +1 y3
+1 + 1 y4

 

Каждый столбец в матрице планирования называют вектор-столбцом, а каждую строку – вектор-строкой.

Таким образом, мы имеем два вектора-столбца независимых переменных и один вектор-столбец параметра оптимизаций. То, что записано в этой таблице в алгебраической форме, можно изобразить геометрически. Найдем в области определения факторов точку, соответствующую основному уровню, и проведем через нее новые оси координат, параллельные осям натуральных значений факторов. Далее, выберем масштабы по новым осям так, чтобы интервал варьирования для каждого фактора равнялся единице. Тогда условия проведения опытов будут соответствовать вершинам квадрата, центром которого является основной уровень, а каждая сторона параллельна одной из осей координат и равна двум интервалам (рис.). Номера вершин квадрата соответствуют номерам опытов в матрице планирования. Площадь, ограниченная квадратом, называется областью эксперимента. Иногда удобнее считать областью эксперимента площадь, ограниченную окружностью, описывающей квадрат. В задачах интерполяции область эксперимента есть область предсказываемых значений у.

На рис.9.2 показан в факторном пространстве симметричный двухуровневый план для двухфакторной функции отклика y=f(x1x2) при нейтральном (рис.9.2,а) и нормированном (рис.9.2,б) представлении уровней факторов. Здесь , – искомые натуральные уровни факторов, – нижние, – верхние уровни, , – интервалы варьирования.

Запись матрицы планирования, особенно для многих факторов, громоздка. Для ее сокращения удобно ввести условные буквенные обозначения строк.

Это делается следующим образом. Порядковый номер фактора ставится в соответствие строчной букве латинского алфавита: х1 – а, х2 – b, ... и т.д. Если теперь для строки матрицы планирования выписать латинские буквы только для факторов, находящихся на верхних уровнях, то условия опыта будут заданы однозначно. Опыт со всеми факторами на нижних уровнях условимся обозначать (1). Матрица планирования вместе с принятыми буквенными обозначениями приведена в табл. 2.

Номер опыта Матрица планирования Буквенные обозначения строк Выход у
x1 x2
–1 –1 (1) y1
+1 –1 a y2
–1 +1 b y3
+1 + 1 ab y4

Теперь вместо полной записи матрицы планирования можно пользоваться только буквенными обозначениями, Ниже приведена буквенная запись еще одного плана: с, b, a, abc, (1), bc, aс, ab. Матрица планирования приведена в табл. 3.

Номер опыта х1 х2 х3 Буквенные обозначения строк у
–1 –1 +1 c у1
–1 +1 –1 b у2
+1 –1 –1 a у3
+1 +1 +1 abc у4
–1 –1 –1 (1) у5
–1 +1 +1 bc у6
+1 –1 +1 ac у7
+1 +1 –1 ab у8

Таким образом вы построили полный факторный эксперимент 23. Он имеет восемь опытов и включает все возможные комбинации уровней трех факторов.

Если для двух факторов все возможные комбинации уровней легко найти прямым перебором (или просто запомнить), то с ростом числа факторов возникает необходимость в некотором приеме построения матриц. Из многих возможных обычно используется три приема, основанных на переходе от матриц меньшей размерности к матрицам большей размерности. Рассмотрим первый. При добавлении нового фактора каждая комбинация уровней исходного плана встречается дважды: в сочетании с нижним и верхним уровнями нового фактора. Отсюда естественно появляется прием: записать исходный план для одного уровня нового фактора, а затем повторить его для другого уровня. Вот как это выглядит при переходе от эксперимента. Этот прием распространяется на построение матриц любой размерности.

Рассмотрим второй прием. Для этого введем правило перемножения столбцов матрицы. При построчном перемножении двух столбцов матрицы произведение единиц с одноименными знаками дает +1, а с разноименными –1. Воспользовавшись этим правилом, получим для случая, который мы рассматриваем, вектор-столбец произведения х1х2 в исходном плане. Далее повторим еще раз исходный план, а у столбца произведений знаки поменяем на обратные Этот прием тоже можно перенести на построение матриц любой размерности, однако он сложнее, чем первый.

Третий прием основан на правиле чередования знаков. В первом столбце знаки меняются поочередно, во втором столбце они чередуются через два, в третьем – через 4, в четвертом – через 8 и т.д. по степеням двойки.

По аналогии с полным факторным экспериментом 22 можно дать геометрическую интерпретацию полного факторного эксперимента 23. Геометрической интерпретацией полного факторного эксперимента 23 служит куб, координаты вершин которого задают условия опытов.

Если поместить центр куба в точку основного уровня факторов, а масштабы по осям выбрать так, чтобы интервал варьирования равнялся единице, то получится куб, изображенный на рис. Куб задает область эксперимента, а центр куба является ее центром.

Фигура, задающая область эксперимента в многомерном пространстве, является некоторым аналогом куба. Будем называть эту фигуру гиперкубом.

Свойства полного факторного эксперимента типа 2k

Мы научились строить матрицы планирования полных факторных экспериментов с факторами на двух уровнях. Теперь выясним, какими общими свойствами эти матрицы обладают независимо от числа факторов. Говоря о свойствах матриц, мы имеем в виду те из них, которые определяют качество модели. Ведь эксперимент и планируется для того, чтобы получить модель, обладающую некоторыми оптимальными свойствами. Это значит, что оценки коэффициентов модели должны быть наилучшими и что точность предсказания параметра оптимизации не должна зависеть от направления в факторном пространстве, ибо заранее неясно, куда предстоит двигаться в поисках оптимума.

Два свойства следуют непосредственно из построения матрицы. Первое из них – симметричность относительно центра эксперимента – формулируется следующим, образом: алгебраическая сумма элементов вектор-столбца каждого фактора равна нулю, или , где j – номер фактора, i – номер опыта, N – число опытов.

Второе свойство – так называемое условие нормировки – формулируется следующим образом: сумма квадратов элементов каждого столбца равна числу опытов, или . Это следствие того, что значения факторов в матрице задаются +1 и –1.

Мы рассмотрели свойства отдельных столбцов матрицы планирования. Теперь остановимся на свойстве совокупности столбцов.

Сумма почленных произведений любых двух вектор-столбцов матрицы равна нулю, или . , j¹n.

Это важное свойство называется ортогональностью матрицы планирования.

Последнее, четвертое свойство называется ротатабельностью, т.е. точки в матрице планирования подбираются так, что точность предсказания значений параметра оптимизации одинакова на равных расстояниях от центра эксперимента и не зависит от направления.

Даны две матрицы планирования:

x1 x2 x1 x2

– – – +

+ – + –

– + – +

+ + + –

Давайте проверим, как выполняются все три свойства для каждой из матриц. Первое свойство выполняется для всех столбцов обеих матриц. Действительно, для первого столбца матрицы а) имеем

(– 1) + (+1) + (- 1) + (+ 1) = 0.

Аналогичный результат получается для всех других столбцов.

Второе свойство– также выполняется для обеих матриц.

С третьим свойством, однако, дело обстоит иначе. Если для матрицы а) формула ортогональности выполняется, то в случае б) это не так. Действительно (–1) (+ 1) + (+ 1) (– 1) + (– 1) (+ 1) + (+1)(–1) = –4≠0.

Полный факторный эксперимент и математическая модель

Давайте еще раз вернемся к матрице 23. Для движения к точке оптимума нам нужна линейная модель у = b0 + b1x1+ b2х2. Наша цель – найти по результатам эксперимента значения неизвестных коэффициентов модели. До сих пор, говоря о линейной модели, мы не останавливались на важном вопросе о статистической оценке ее коэффициентов. Теперь необходимо сделать ряд замечаний по этому поводу. Можно утверждать, что эксперимент проводится для проверки гипотезы о том, что линейная модель η = β0 + β1x1+ β2х2 адекватна. Греческие буквы использованы для обозначения «истинных» генеральных значений соответствующих неизвестных. Эксперимент, содержащий конечное число опытов, позволяет только получить выборочные оценки для коэффициентов уравнения у = b0 + b1x1 + … + bkхk. Их точность и надежность зависят от свойств выборки и нуждаются в статистической проверке.

После проведения опытов во всех точках факторного пространства необходимо найти коэффициенты уравнения регрессии. Для этого воспользуемся методом наименьших квадратов.

;

, поскольку ,

то после дифференцирования получим

Для линейной регрессии при k=2:

;

продифференцировав по коэффициентам, получим:

Запишем уравнения в полной форме:

Отсюда, принимая в расчет свойства матрицы планирования, получим следующие формулы для вычисления коэффициентов

 

или в общем виде

Вы видите, что благодаря кодированию факторов расчет коэффициентов превратился в простую арифметическую процедуру.

Для подсчета коэффициента b1 используется вектор-столбец х1 а для b2 – столбец х2. Остается неясным, как найти b0. Если наше уравнение у = b0 + b1x1+ b2х2 справедливо, то оно верно и для средних арифметических значений переменных: = b0 + b1 1+ b2 2. Но в силу свойства симметрии 1 = 2 = 0. Следовательно, = b0. Мы показали, что b0 есть среднее арифметическое значение параметра оптимизации. Чтобы его получить, необходимо сложить все у и разделить на число опытов. Чтобы привести эту процедуру в соответствие с формулой для вычисления коэффициентов, в матрицу планирования удобно ввести вектор-столбец фиктивной переменной x0, которая принимает во всех опытах значение +1. Это было уже учтено в записи формулы, где j принимало значения от 0 до к.

Теперь у нас есть все необходимое, чтобы найти неизвестные коэффициенты линейной модели

у = b0 + b1x1+ b2х2

Коэффициенты при независимых переменных указывают на силу влияния факторов. Чем больше численная величина коэффициента, тем большее влияние оказывает фактор. Если коэффициент имеет знак плюс, то с увеличением значения фактора параметр оптимизации увеличивается, а если минус, то уменьшается. Величина коэффициента соответствует вкладу данного фактора в величину параметра оптимизации при переходе фактора с нулевого уровня на верхний или нижний.

Иногда удобно оценивать вклад фактора при переходе от нижнего к верхнему уровню. Вклад, определенный таким образом, называется эффектом фактора (иногда его называют основным или главным эффектом). Он численно равен удвоенному коэффициенту. Для качественных факторов, варьируемых на двух уровнях, основной уровень не имеет физического смысла. Поэтому понятие «эффект фактора» является здесь естественным.

Планируя эксперимент, на первом этапе мы стремимся получить линейную модель. Однако у нас нет гарантии, что в выбранных интервалах варьирования процесс описывается линейной моделью. Существуют способы проверки пригодности линейной модели. А если модель нелинейна, как количественно оценить нелинейность, пользуясь полным факторным экспериментом?

Один из часто встречающихся видов нелинейности связан с тем, что эффект одного фактора зависит от уровня, на котором находится другой фактор. В этом случае говорят, что имеет место эффект взаимодействия двух факторов. Полный факторный эксперимент позволяет количественно оценивать эффекты взаимодействия. Для этого надо, пользуясь правилом перемножения столбцов, получить столбец произведения двух факторов. При вычислении коэффициента, соответствующего эффекту взаимодействия, с новым вектор-столбцом можно обращаться так же, как с вектор-столбцом любого фактора. Для полного факторного эксперимента 22 матрица планирования с учетом эффекта взаимодействия представлена в табл. Очень важно, что при добавлении столбцов эффектов взаимодействий все рассмотренные свойства матриц планирования сохраняются.

Матрица планирования эксперимента 22

с учетом взаимодействия факторов

 

Номер опыта х0 х1 х2 х1х2 у
+1 –1 –1 +1 у1
+1 +1 –1 –1 у2
+1 –1 +1 –1 у3
+1 +1 +1 +1 у4

Теперь модель выглядит следующим образом:

у= b0 х0 + b1 x1 + b2 x2 + b12х1х2.

Коэффициент b12 вычисляется обычным путем.

Столбцы x1 и х2 задают планирование – по ним непосредственно определяются условия опытов, а столбцы х0 и х1х2 служат только для расчета.

Обращаем ваше внимание на то, что при оптимизации мы стремимся сделать эффекты взаимодействия возможно меньшими.

В задачах интерполяции, напротив, их выявление часто важно и интересно.

Покажем на примере еще один способ расчета коэффициентов, известный под названием метода Йетса. Все операции по расчету приведены в табл.

у1 у1 + у2 у1 + у2 + у3 + у4
у2 у3 + у4 у2 – у1 + у4 – у3
у3 у2 – у1 у3 + у4 – у1 – у2
у4 у4 – у3 у4 – у3 –у2 + у1

Слева в этой таблице выписан вектор-столбец значений параметра оптимизации. Первая операция (2-й столбец) состоит в попарном сложении и вычитании этих значений, причем верхнее число вычитается из нижнего. Вторая операция (3-й столбец) состоит в том же действии, но уже с числами второго столбца.

Если теперь числа, оказавшиеся в третьем столбце, разделить на число опытов, то получим значения коэффициентов. Операции сложения и вычитания повторяются столько раз, сколько имеется факторов.

5. Понятие плана эксперимента. Кодирование факторов. Графическое и табличное представление плана-???????

Ошибки параллельных опытов. Дисперсия параметра оптимизации. Проверка однородности дисперсий. Рандомизация. Разбиение факторных планов на блоки. Неполные планы.

Постановка повторных или параллельных опытов не дает полностью совпадающих результатов. Это объясняется тем, что всегда существует ошибка опыта. Эту ошибку необходимо оценить в параллельных опытах. Для этого опыты воспроизводятся несколько раз при одинаковых условиях и затем вычесляется среднее арифметическое всех результатов. . Отклонение результата любого опыта от среднего арифметического представляется как разность . Наличие отклонений говорит об изменчивости значения повторных опытов. Для измерения этой изменчивости обычно используют дисперсию . Дисперсией называется среднее значение квадрата отклонений величины от среднего арифметического. (n-1) – число степеней свободы. Корень квадратный из дисперсии есть среднее квадратичное отклонение. Дисперсия и отклонение являются мерой рассеяния, изменчивости. Чем больше значение дисперсии и стандарта, тем больше рассеянное значение параллельных опытов около среднего значения. Среднее арифметическое равно сумме всех отдельных результатов деленных на число опытов, если они имеют нормальное распределение. Все ошибки можно разделить на случайные и систематические. И случайные и систематические ошибки состоят из множества элементарных ошибок. Некоторые из них можно учесть. А некоторые возникают только в процессе проведения самого опыта.


Поделиться:

Дата добавления: 2015-04-18; просмотров: 985; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты