Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Что такое частица?

Читайте также:
  1. А что же такое святость?
  2. А что такое правильная молитва?
  3. Глава I. Что такое манипуляция?
  4. Глава восьмая. ЧТО ТАКОЕ ЭФИРНЫЕ МАСЛА?
  5. Давайте разберемся, что такое уход из бизнеса
  6. Итак, кто УМАЛИТСЯ как ДИТЯ, тот и БОЛЬШЕ в Царстве Небесном. И кто ПРИМЕТ одно такое ДИТЯ во имя Моё, тот Меня принимает»(Матфей18,4-5).
  7. Как прийти к оценке? Что такое конкретно оценка? Произвожу ли я оценку в данный момент? Что я делаю прямо сейчас?
  8. Неудовлетворительная структура баланса фирмы – это такое состояние имущества и обязательств, когда
  9. Под устойчивым принято понимать такое состояние, в которое система возвращается при любых малых от него отклонениях.
  10. Ради Бога, что же такое нормальный кризис?

 

Суть теории струн в том, что она может объяснить природу и материи, и пространства-времени, т. е. природу и «дерева», и «мрамора». Теория струн дает ответы на ряд головоломных вопросов о частицах: например, почему в природе их так много. Чем глубже мы проникаем в мир субатомных частиц, тем больше частиц находим. В нынешнем субатомном «зоопарке» насчитывается несколько сотен частиц, описание их свойств занимает целые тома. Даже Стандартная модель дала нам ошеломляющее количество «элементарных частиц». Теория струн отвечает на этот вопрос, так как струна, которая в 100 квинтиллионов раз меньше протона, совершает колебания, а каждый тип колебаний порождает определенный резонанс или частицу. Струна настолько мала, что резонанс струны и частица почти неразличимы. Только если каким-нибудь способом увеличить частицу, можно увидеть, что это вовсе не точка, а тип колебания струны.

В этой картине каждая субатомная частица соответствует определенному резонансу, возникающему при конкретной частоте. Понятие резонанса знакомо нам в повседневной жизни. Для примера вспомним пение под душем. Даже если от природы нам достался слабый, глуховатый, дрожащий голос, все мы знаем, как легко почувствовать себя звездой оперной сцены в уединенной обстановке душевой кабинки. Это происходит потому, что волны звуков, которые мы издаем, быстро наталкиваются на стены кабинки и отражаются от них. Колебания, без труда вписывающиеся в пространство между стенами, многократно усиливаются и дают резонирующие звуки. Определенные колебания вызывают резонанс, а остальные, волны которых имеют неподходящий размер, гасятся.

Или же представим себе скрипичную струну, способную вибрировать с разными частотами, издавая звуки, соответствующие нотам ля, си и до. Струна издает вибрации, которые гаснут по мере приближения к ее концам (так как струна закреплена с обоих концов), и совершают целое число колебаний между ними. В принципе струна может вибрировать с любой частотой из бесконечного множества. Нам известно, что ноты сами по себе — не принципиальны. Нота ля не более существенна, чем нота си. Главное — это сама струна. Незачем изучать каждую ноту отдельно от остальных. Зная, как вибрирует струна скрипки, мы сразу понимаем свойства бесконечного множества музыкальных нот.



Так и частицы Вселенной сами по себе не фундаментальны. Электрон не более фундаментален, чем нейтрино. Они кажутся фундаментальными только потому, что нашим микроскопам недостает мощности для выявления структуры этих частиц. Согласно теории струн, если мы каким-то образом увеличим точечную частицу, то увидим маленькую вибрирующую струну. В сущности, эта теория гласит, что материя — не что иное, как гармонии, созданные колеблющейся струной. Поскольку количество гармоний, которые можно составить для скрипки, бесконечно, из вибрирующих струн образуется бесконечное множество форм материи. Этим объясняется обилие частиц в природе. Законы физики можно сравнить с законами гармонии применительно к струне. А саму вселенную, состоящую из бесчисленного множества колеблющихся струн, уподобить симфонии.

Теория струн может объяснить природу не только частиц, но и пространства-времени. Перемещаясь в пространстве-времени, струна совершает сложную последовательность движений. Струна может распасться на более мелкие струны или столкнуться с другими и образовать длинную струну. Ключевой момент в том, что все квантовые поправки или петлевые схемы конечны и поддаются вычислениям. Это первая квантовая теория гравитации в истории физики, дающая конечные квантовые поправки. (Как мы помним, все предшествующие теории, в том числе изначальная теория Эйнштейна, концепция Калуцы-Клейна и теория супергравитации, не удовлетворяли этому основному критерию.)



Для того чтобы осуществлять сложные перемещения, струна должна подчиняться целому ряду условий самосогласованности. Условия самосогласованности настолько жестки, что налагают чрезвычайно строгие ограничения на пространство-время. Другими словами, струна не в состоянии самосогласованно перемещаться в любом произвольном пространстве-времени, подобно точечной частице.

Когда ограничения, которые струна налагает на пространство-время, были впервые определены, потрясенные физики увидели, как из уравнений струнной теории возникли уравнения Эйнштейна. Это было поразительно: физики обнаружили, как без каких-либо допущений, связанных с уравнениями Эйнштейна, эти же самые уравнения, как по волшебству, появляются из теории струн. Оказалось, что и уравнения Эйнштейна нельзя считать фундаментальными, если их можно вывести из теории струн.

Если теория струн верна, значит, она дает ответ на давнюю загадку о природе «дерева» и «мрамора». Эйнштейн полагал, что когда-нибудь один только «мрамор» объяснит все свойства «дерева». Для Эйнштейна «дерево» оставалось всего лишь изъяном или вибрацией пространства-времени — не больше и не меньше. Однако специалисты в области квантовой физики придерживались прямо противоположного мнения. Они считали, что «мрамор» можно превратить в «дерево», т. е. метрический тензор Эйнштейна можно преобразовать в гравитон, дискретную порцию энергии, переносящей силу гравитации. Эти точки зрения диаметрально противоположны, долгое время компромисс между ними считался недостижимым. А оказалось, что струнная теория и есть то самое «недостающее звено» между «деревом» и «мрамором».

Теория струн может определять частицы материи как резонансные колебания струны. Кроме того, из теории струн можно вывести уравнения Эйнштейна при условии самосогласованного движения струны в пространстве-времени. Таким образом, мы располагаем всеобъемлющей теорией и материи-энергии, и пространства-времени.

Ограничения самосогласованности на удивление строги. К примеру, они запрещают струне перемещаться в трех или четырех измерениях. Далее мы убедимся, что условия самосогласованности вынуждают струну перемещаться в конкретном количестве измерений. По сути дела, единственные «магические числа», которые допускает теория струн, — 10 и 26 измерений. К счастью, теории струн, определенной для этих измерений, хватает для объединения всех основных взаимодействий.

Следовательно, теории струн достаточно для объяснения всех фундаментальных законов природы. Начав с простой теории вибрирующей струны, можно вывести теорию Эйнштейна, теории Калуцы-Клейна и супергравитации, Стандартную модель и даже теорию Великого объединения. Возможность заново вывести все достижения физики последних двух тысячелетий из чисто геометрических доводов теории струн кажется настоящим чудом. Все теории, до сих пор рассматривавшиеся в этой книге, автоматически включены в теорию струн.

Нынешний интерес к теории струн начался с работы Джона Шварца из Калифорнийского технологического института и его соавтора Майкла Грина из лондонского Колледжа королевы Марии. Прежде считалось, что у концепции струн есть недостатки, препятствующие разработке полноценной самосогласованной теории. Но в 1984 г. эти два физика доказали, что струна отвечает всем условиям самосогласованности. В итоге молодые ученые наперегонки бросились решать задачи, связанные с этой теорией, в надежде заслужить признание. К концу 1980-х гг. в кругу физиков началась настоящая «золотая лихорадка». (Конкуренция между сотнями самых талантливых физиков-теоретиков мира, которые занимаются этими вопросами, резко обострилась. Недавно на обложку журнала Discovery был помещен портрет специалиста в области теории струн Димитриса Нанопулоса из Техаса. Ученый открыто заявлял о своих притязаниях на Нобелевскую премию по физике. Редко подобные страсти вспыхивают из-за абстрактной теории.)

 


Дата добавления: 2015-09-13; просмотров: 5; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Суперструны | Почему именно струны?
lektsii.com - Лекции.Ком - 2014-2017 год. (0.008 сек.) Главная страница Случайная страница Контакты