Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


РАДИАЦИЯ




В метеорологии термин "радиация" означает электромагнитное излучение, к которому относят видимый свет, ультрафиолетовое и инфракрасное излучение, но не включают радиоактивное излучение. Каждый объект в зависимости от своей температуры испускает разные лучи: менее нагретые тела — главным образом инфракрасные, горячие тела — красные, более горячие — белые (т.е. эти цвета будут преобладать при восприятии нашим зрением). Еще более горячие объекты испускают голубые лучи. Чем сильнее нагрет объект, тем больше он излучает световой энергии.

В 1900 немецкий физик Макс Планк разработал теорию, объясняющую механизм излучения нагретых тел. Эта теория, за которую в 1918 он был удостоен Нобелевской премии, стала одним из краеугольных камней физики и положила начало квантовой механике (см. также КВАНТОВАЯ МЕХАНИКА). Но не всякое световое излучение испускается нагретыми телами. Существуют и другие процессы, вызывающие свечение, например флюоресценция.

Хотя температура внутри Солнца составляет миллионы градусов, цвет солнечного света определяется температурой его поверхности (ок. 6000° С). Электрическая лампа накаливания испускает световые лучи, спектр которых существенно отличается от спектра солнечного света, так как температура нити накала в лампочке составляет от 2500° С до 3300° С.

Преобладающим типом электромагнитного излучения облаков, деревьев или людей является инфракрасное излучение, невидимое для человеческого глаза. Оно является основным способом вертикального обмена энергией между земной поверхностью, облаками и атмосферой.

Метеорологические спутники оснащены специальными приборами, которые выполняют съемку в инфракрасных лучах, испускаемых в космическое пространство облаками и земной поверхностью. Более холодные, чем земная поверхность, облака излучают меньше и, следовательно, выглядят в инфракрасных лучах темнее, чем Земля. Большое преимущество инфракрасной фотосъемки заключается в том, что ее можно проводить круглосуточно (ведь облака и Земля излучают инфракрасные лучи постоянно).

Угол инсоляции. Величина инсоляции (приходящей солнечной радиации) меняется во времени и от места к месту в соответствии с изменением угла, под которым солнечные лучи падают на поверхность Земли: чем выше Солнце над головой, тем она больше. Изменения этого угла определяются в основном обращением Земли вокруг Солнца и ее вращением вокруг своей оси.

Обращение Земли вокруг Солнца не имело бы большого значения, если бы земная ось была перпендикулярна плоскости орбиты Земли. В этом случае в любой точке земного шара в одно и то же время суток Солнце поднималось бы на одинаковую высоту над горизонтом и проявлялись бы только небольшие сезонные колебания инсоляции, обусловленные изменением расстояния от Земли до Солнца. Но на самом деле земная ось отклоняется от перпендикуляра к плоскости орбиты на 23°30¢, и из-за этого меняется угол падения солнечных лучей в зависимости от положения Земли на орбите.

Для практических целей удобно считать, что Солнце во время годичного цикла смещается к северу в период с 21 декабря по 21 июня и к югу — с 21 июня по 21 декабря. В местный полдень 21 декабря вдоль всего Южного тропика (23°30¢ ю.ш.) Солнце "стоит" прямо над головой. В это время в Южном полушарии солнечные лучи падают под наибольшим углом. Такой момент в Северном полушарии носит название "зимнего солнцестояния". В ходе кажущегося смещения к северу Солнце пересекает небесный экватор 21 марта (весеннее равноденствие). В этот день оба полушария получают одинаковое количество солнечной радиации. Наиболее северного положения, 23°30¢ с.ш. (Северного тропика), Солнце достигает 21 июня. Этот момент, когда в Северном полушарии солнечные лучи падают под наибольшим углом, называется летним солнцестоянием. 23 сентября, в осеннее равноденствие, Солнце вновь пересекает небесный экватор.

Наклоном земной оси к плоскости орбиты Земли обусловлены изменения не только угла падения солнечных лучей на земную поверхность, но и ежесуточной продолжительности солнечного сияния. В равноденствие продолжительность светового дня на всей Земле (за исключением полюсов) равна 12 ч, в период с 21 марта по 23 сентября в Северном полушарии она превышает 12 ч, а с 23 сентября по 21 марта — меньше 12 ч. Севернее 66°30¢ с.ш. (Северного полярного круга) с 21 декабря полярная ночь длится круглые сутки, а с 21 июня в течение 24 ч продолжается световой день. На Северном полюсе полярная ночь наблюдается с 23 сентября по 21 марта, а полярный день — с 21 марта по 23 сентября.

Таким образом, причиной двух отчетливо выраженных циклов атмосферных явлений — годового, продолжительностью 365 1/4 суток, и суточного, 24-часового, — является вращение Земли вокруг Солнца и наклон земной оси.

Величина солнечной радиации, поступающей за сутки на внешнюю границу атмосферы в Северном полушарии, выражается в ваттах на квадратный метр горизонтальной поверхности (т.е. параллельной земной поверхности, не всегда перпендикулярной солнечным лучам) и зависит от солнечной постоянной, угла наклона солнечных лучей и продолжительности дня (табл. 1).

Таблица 1. ПОСТУПЛЕНИЕ СОЛНЕЧНОЙ РАДИАЦИИ НА ВЕРХНЮЮ ГРАНИЦУ АТМОСФЕРЫ (Вт/м2 в сутки)
Широта,°с.ш.
21 июня
21 декабря
Среднегодовое значение

Из таблицы следует, что контраст между летним и зимним периодами поразителен. 21 июня в Северном полушарии величина инсоляция примерно одинакова. 21 декабря между низкими и высокими широтами существуют значительные различия, и это основная причина того, что климатическая дифференциация этих широт зимой намного больше, чем летом. Макроциркуляция атмосферы, которая зависит главным образом от различий в прогревании атмосферы, лучше развита зимой.

Годовая амплитуда величины потока солнечной радиации на экваторе довольно мала, но резко возрастает по направлению к северу. Поэтому при прочих равных условиях годовая амплитуда температур определяется главным образом широтой местности.

Вращение Земли вокруг своей оси. Интенсивность инсоляции в любой точке земного шара в любой день года зависит также от времени суток. Это объясняется, конечно, тем, что за 24 ч Земля совершает оборот вокруг своей оси.

Альбедо — доля солнечной радиации, отраженная объектом (обычно выражается в процентах или долях единицы). Альбедо свежевыпавшего снега может достигать 0,81, альбедо облаков в зависимости от типа и вертикальной мощности колеблется от 0,17 до 0,81. Альбедо темного сухого песка — ок. 0,18, зеленого леса — от 0,03 до 0,10. Альбедо крупных акваторий зависит от высоты Солнца над горизонтом: чем оно выше, тем меньше альбедо.

Альбедо Земли вместе с атмосферой изменяется в зависимости от облачности и площади снежного покрова. Из всей солнечной радиации, поступающей на нашу планету, ок. 0,34 отражается в космическое пространство и теряется для системы Земля — атмосфера.

Поглощение атмосферой. Около 19% солнечной радиации, поступающей на Землю, поглощается атмосферой (по осредненным оценкам для всех широт и всех времен года). В верхних слоях атмосферы ультрафиолетовое излучение поглощается преимущественно кислородом и озоном, а в нижних слоях красная и инфракрасная радиация (длина волны более 630 нм) поглощается в основном водяным паром и в меньшей степени — углекислым газом.

Поглощение поверхностью Земли. Около 34% приходящей на верхнюю границу атмосферы прямой солнечной радиации отражается в космическое пространство, а 47% проходит сквозь атмосферу и поглощается земной поверхностью.

Изменение поглощаемого земной поверхностью количества энергии в зависимости от широты показано в табл. 2 и выражено через среднегодовое количество энергии (в ваттах), поглощенное за сутки горизонтальной поверхностью площадью 1 кв.м. Разность среднегодового прихода солнечной радиации к верхней границе атмосферы за сутки и радиации, поступившей на земную поверхность при отсутствии облачности на разных широтах, показывает ее потери под влиянием различных атмосферных факторов (кроме облачности). Эти потери повсеместно составляют примерно одну треть от поступающей солнечной радиации.

Таблица 2. СРЕДНЕГОДОВОЕ ПОСТУПЛЕНИЕ СОЛНЕЧНОЙ РАДИАЦИИ НА ГОРИЗОНТАЛЬНУЮ ПОВЕРХНОСТЬВ СЕВЕРНОМ ПОЛУШАРИИ (Вт/м2 в сутки)
Широта,°с.ш.
Приход радиации на внешней границе атмосферы
Приход радиации на земную поверхность при ясном небе
Приход радиации на земную поверхность при средней облачности
Радиация, поглощенная земной поверхностью

Разница между величиной прихода солнечной радиации к верхней границе атмосферы и величиной ее прихода на земную поверхность при средней облачности, обусловленная потерями радиации в атмосфере, существенно зависит от географической широты: 52% на экваторе, 41% на 30° с.ш. и 57% на 60° с.ш. Это прямое следствие количественного изменения облачности с широтой. Из-за особенностей циркуляции атмосферы в Северном полушарии количество облаков минимально на широте ок. 30°. Влияние облачности столь велико, что максимум энергии доходит до земной поверхности не на экваторе, а в субтропических широтах.

Разница между количеством радиации, приходящей на земную поверхность, и количеством поглощенной радиации образуется только за счет альбедо, которое особенно велико в высоких широтах и обусловлено большой отражательной способностью снежного и ледяного покрова.

Из всей солнечной энергии, используемой системой Земля — атмосфера, менее одной трети непосредственно поглощается атмосферой, а основную часть энергии она получает отраженной от земной поверхности. Больше всего солнечной энергии поступает в районы, расположенные в низких широтах.

Излучение Земли. Несмотря на непрерывный приток солнечной энергии в атмосферу и на земную поверхность, средняя температура Земли и атмосферы довольно постоянна. Причина этого заключается в том, что почти такое же количество энергии излучается Землей и ее атмосферой в космическое пространство, в основном в виде инфракрасной радиации, поскольку Земля и ее атмосфера намного холоднее, чем Солнце, и лишь малая доля — в видимой части спектра. Излучаемая инфракрасная радиация регистрируется метеорологическими спутниками, оборудованными специальной аппаратурой. Многие спутниковые синоптические карты, демонстрируемые по телевидению, представляют собой снимки в инфракрасных лучах и отображают излучение тепла земной поверхностью и облаками.

Тепловой баланс. В результате сложного энергетического обмена между земной поверхностью, атмосферой и межпланетным пространством каждый из этих компонентов получает в среднем столько же энергии от двух других, сколько теряет сам. Следовательно, ни земная поверхность, ни атмосфера не испытывают ни приращения, ни убывания энергии.


Поделиться:

Дата добавления: 2015-09-13; просмотров: 75; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты