Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Про обозначения 2 страница




комбинация (1,0) дает два решения, причем (X3,X4)=(0,0) или (0,1)

комбинация (1,1) дает два решения, причем (X3,X4)=(1,0) или (1,1)

7) из предыдущего пункта делаем вывод, что

Ki+1 = Mi (комбинация (0,0) появилась из (1,0) на предыдущем шаге)

Li+1 = Mi (комбинация (0,1) появилась из (1,0) на предыдущем шаге)

Mi+1 = Ni (комбинация (1,0) появилась из (1,1) на предыдущем шаге)

Ni+1 = Li+Ni (комбинация (1,1) появляется из (0,1) и (1,1))

 

 

8) используя эти рекуррентные формулы, заполняем таблицу для i=4,…,10

i Ki Li Mi Ni Всего

9) таким образом, ответ: 13 + 13 + 19 + 28 = 73 решения.

Ещё пример задания:

Сколько различных решений имеет логическое уравнение

(X1ÚX2) Ù (X2ÚX3) Ù (X3ÚX4) Ù (X4ÚX5) Ù (X5ÚX6) = 1

где x1, x2, …, x6 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение:

34) перепишем уравнение, заменив знаки логических операций:

35) учитывая, что , заменяем все выражения в скобках на импликацию:

36) решение уравнения можно записать в виде шести двоичных знаков, которые обозначают соответственно, переменные

37) далее вспомним, что импликация дает ложное значение, если её первая часть (посылка) истинна, а вторая (следствие) ложно, поэтому из сразу следует, что

38) это значит, что в исходном выражении появится нуль, если в цепочке битов, соответствующей значениям переменных, появится комбинация 10, то есть предыдущее значение истинно, а следующее за ним – ложно

39) поэтому решениями этого уравнения будут все комбинации значений переменных, для которых в соответствующей битовой цепочке нет последовательности 10;

40) таких цепочек всего 7:

000000, 000001, 000011, 000111, 001111, 011111, 111111

41) таким образом, ответ: 7 решений.

Ещё пример задания:

Сколько различных решений имеет система уравнений

X1 Ú X2 = 1

X2 Ú X3 = 1

...

X9 Ú X10 = 1

где x1, x2, …, x10 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение (последовательное решение, через единицы):

1) количество комбинаций 10 логических переменных равно 210 = 1024, поэтому вариант с построением полной таблицы истинности отпадает сразу

2) сначала рассмотрим первое уравнение ; согласно таблице истинности операции «ИЛИ» оно имеет 3 решения (точнее, с учетом других переменных, 3 группы решений): (0,0,*), (0,1,*) и (1,1,*); здесь звездочка означает, что остальные 8 переменных могут быть любыми

3) выпишем все решения в столбик, чтобы была видна закономерность:

(0,0,*)

(0,1,*)

(1,1,*)

4) заметим, что при X2 = 0 значение X1 должно быть равно 0, а при X2 = 1 значение X1 может быть любым

5) второе уравнение, рассматриваемое отдельно, тоже имеет 3 группы решений: (x1,0,0,*), (x1,0,1,*) и (x1,1,1,*), где x1, – некоторое логическое значение переменной X1

6) решения системы первых двух уравнений – это те комбинации значений переменных, которые удовлетворяют одновременно и первому, и второму

7) из п. 4 следует, что при X2 = 0 значение X1 должно быть равно 0, а при X2 = 1 значение X1 может быть любым, поэтому решение системы двух первых уравнений включает 4 группы: из (x1,0,0,*) и (x1,0,1,*) при X1 = 0 получаем две группы

(0,0,0,*) и (0,0,1,*)

и из (x1,1,1,*) получается еще две:

(0,1,1,*) и (1,1,1,*).

8) таким образом, система из двух уравнений имеет 4 решения

9) выпишем все решения в столбик, чтобы была видна закономерность:

(0,0,0,*)

(0,0,1,*)

(0,1,1,*)

(1,1,1,*)

10) таким образом, если X­3 = 0, все предыдущие переменные определяются однозначно – они должны быть равны нулю (идем по системе «снизу вверх»); если же X­3 = 1, то предыдущие переменные могут быть любыми, второе уравнение их не ограничивает

11) поэтому при увеличении числа переменных на единицу количество решений также увеличивается на единицу

12) аналогично доказывается, что система из 3 уравнений имеет 5 решений, и т.д., то есть, система из 9 уравнений с 10 переменными имеет 11 решений

13) таким образом, ответ: 11 решений.

Решение (последовательное решение, через нули):

1) сначала рассмотрим первое уравнение ; согласно таблице истинности операции «ИЛИ» оно НЕ выполняется только в одном случае (точнее, с учетом других переменных, для одной группы комбинаций): (1,0,*) здесь звездочка означает, что остальные 8 переменных могут быть любыми

2) общее количество комбинаций X1 и X2 ­­равно 22 = 4, поэтому число решений первого уравнения равно 4 – 1 = 3

3) второе уравнение, рассматриваемое отдельно, тоже ложно только для одной комбинации имеет 3 группы решений: (x1,1,0,*), где x1, – некоторое логическое значение переменной X1

4) теперь рассмотрим вместе первое и второе уравнения и определим, в скольких случаях хотя бы одно из них неверно

5) множества (1,0,x­­3,*) и (x1,1,0,*) не пересекаются, потому что в первом X2 = 0, а во втором X2 = 1, поэтому система из двух уравнений не выполнена для 4-х комбинаций:

(1,0,0,*), (1,0,1,*), (0,1,0,*) и (1,1,0,*)

6) общее количество комбинаций трех логический переменных равно 23 = 8, поэтому количество решений системы из двух уравнений равно 8 – 4 = 4

7) аналогично доказывается, что система из 3 уравнений имеет 5 решений, и т.д., то есть, система из 9 уравнений с 10 переменными имеет 11 решений

8) таким образом, ответ: 11 решений.

Решение (табличный метод):

1) рассмотрим все решения первого уравнения по таблице истинности:

X2 X1

2) строчка, выделенная красным фоном, не удовлетворяет условию, поэтому дальше ее рассматривать не будем

3) теперь подключаем третью переменную и второе уравнение:

X3 X2 X1
?
?
?

4) при каких значениях переменной X3 будет верно условие? Очевидно, что на это уже не влияет X­1 (этот столбец выделен зеленым цветом). Если X2 = 1, то сразу получаем, что X3 = 1 (иначе ):

X3 X2 X1

5) как видно из таблицы, верхняя строчка предыдущей таблицы (где были все нули) дает два решения при подключении очередного уравнения, а все остальные – по одному

6) понятно, что такая же ситуация будет продолжаться и дальше, то есть, при добавлении каждой новой переменной число решений увеличивается на 1

7) рассуждая таким образом и дальше, получаем, что для 3-х уравнений с 4-мя переменными будет 5 решений, для 4 уравнений – 6 решений, …, а для 9 уравнений – 11 решений

8) обратите внимание на форму таблицы – единицы и нули образуют два треугольника

9) таким образом, ответ: 11 решений.

Рекомендации: · по-видимому, лучший способ решения задач этого типа основан на двух идеях: 1) замена переменных (если она возможна), позволяющая сократить количество неизвестных и таким образом упростить решение 2) последовательное решение уравнений, начиная с первого, затем система из первых двух, первых трех и т.д. · для записи хода решения и минимизации путаницы лучше использовать табличный метод, при котором все переменные, от которых зависит очередное уравнение, размещены в крайних левых столбцах таблицы

Еще пример задания:

Сколько различных решений имеет система уравнений

(X1ºX2) Ú (X3ºX4) = 1

(X3ºX4) Ú (X5ºX6) = 1

(X5ºX6) Ú (X7ºX8) = 1

(X7ºX8) Ú (X9ºX10) = 1

где x1, x2, …, x10 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение:

1) количество комбинаций 10 логических переменных равно 210 = 1024, поэтому вариант с построением полной таблицы истинности отпадает сразу

2) заметим, что при обозначениях , , , и мы получаем систему из 4 уравнений и 5 независимыми переменными; эта система уравнений относится к типу, который рассмотрен в предыдущей разобранной задаче:

Y1 Ú Y2 = 1

Y2 Ú Y3 = 1

Y3 Ú Y4 = 1

Y4 Ú Y5 = 1

3) как следует из разбора предыдущей задачи, такая система имеет 5+1 = 6 решений для переменных Y1 … Y5

4) теперь нужно получить количество решений в исходных переменных, X1 … X10; для этого заметим, что переменные Y1 … Y5 независимы;

5) предположим, что значение Y1 известно (0 или 1); поскольку , по таблице истинности операции «эквивалентность» (истина, когда два значения одинаковы), есть две соответствующих пары (X1;X2) (как для случая Y1 = 0, так и для случая Y1 = 1)

6) у нас есть 5 переменных Y1 … Y5, каждая их комбинация дает 2 пары (X1;X2), 2 пары (X3;X4), 2 пары (X5;X6), 2 пары (X7;X8) и 2 пары (X9;X10), то есть всего 25 = 32 комбинации исходных переменных

7) таким образом, общее количество решений равно 6 ·32 = 192

8) ответ: 192 решения

Еще пример задания:

Сколько различных решений имеет система уравнений

(X1ÙX2) Ú (X1ÙX2) Ú (X3ÙX4) Ú (X3ÙX4) = 1

(X3ÙX4) Ú (X3ÙX4) Ú (X5ÙX6) Ú (X5ÙX6) = 1

(X5ÙX6) Ú (X5ÙX6) Ú (X7ÙX8) Ú (X7ÙX8) = 1

(X7ÙX8) Ú (X7ÙX8) Ú (X9ÙX10) Ú (X9ÙX10) = 1

где x1, x2, …, x10 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение:

1) количество комбинаций 10 логических переменных равно 210 = 1024, поэтому вариант с построением полной таблицы истинности отпадает сразу

2) решать такую систему «в лоб» достаточно сложно, нужно попробовать ее упростить

3) заметим, что

(X1ÙX2) Ú (X1ÙX2) = (X1 º X2),

где символ º означает операцию «эквивалентность» (значения равны);

4) кроме того,

(X3ÙX4) Ú (X3ÙX4) = (X3 Å X4) = (X3 º X4),

где символ Å означает операцию «исключающее ИЛИ» (значения НЕ равны); это операция, обратная эквивалентности

5) используем замену переменных, выделив члены, объединяющие пары исходных переменных (X1 и X2, X3 и X4, X5 и X6, X7 и X8, X9 и X10)

Y1 = (X1 º X2) Y2 = (X3 º X4)

Y3 = (X5 º X6) Y4 = (X7 º X8)

Y5 = (X9 º X10)

6) при этих обозначения система уравнений преобразуется к виду

Y1 Ú Y2 = 1

Y2 Ú Y3 = 1

Y3 Ú Y4 = 1

Y4 Ú Y5 = 1

9) как показано выше (при разборе пред-предыдущей задачи), такая система имеет 5+1 = 6 решений для независимых переменных Y1 … Y5

10) предположим, что значение Y1 известно (0 или 1); поскольку , по таблице истинности операции «эквивалентность» есть две соответствующих пары (X1;X2) (как для случая Y1 = 0, так и для случая Y1 = 1)

11) у нас есть 5 переменных Y1 … Y5, каждая их комбинация дает 2 пары (X1;X2), 2 пары (X3;X4), 2 пары (X5;X6), 2 пары (X7;X8) и 2 пары (X9;X10), то есть всего 25 = 32 комбинации исходных переменных

12) таким образом, общее количество решений равно 6 ·32 = 192

7) ответ: 192 решения

Еще пример задания:

Сколько различных решений имеет система уравнений

((X1ºX2) Ù (X3ºX4)) Ú ((X1ºX2) Ù (X3ºX4)) = 1

((X3ºX4) Ù (X5ºX6)) Ú ((X3ºX4) Ù (X5ºX6)) = 1

((X5ºX6) Ù (X7ºX8)) Ú ((X5ºX6) Ù (X7ºX8)) = 1

((X7ºX8) Ù (X9ºX10)) Ú ((X7ºX8) Ù (X9ºX10)) = 1

где x1, x2, …, x10 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение:

1) количество комбинаций 10 логических переменных равно 210 = 1024, поэтому вариант с построением полной таблицы истинности отпадает сразу

2) решать такую систему «в лоб» достаточно сложно, нужно попробовать ее упростить

3) рассмотрим первое уравнение, заменив обозначения логических операций на более простые:

,

где и . Выражение в левой части последнего равенства – это операция эквивалентности между Y­1 и Y2, то есть первое уравнение запишется в виде

4) аналогично, вводя обозначения , и , запишем исходную систему в виде

(Y1 ºY2) = 1

(Y2 ºY3) = 1

(Y3 ºY4) = 1

(Y4 ºY5) = 1

заметим, что все переменные здесь независимы друг от друга

13) найдем решение этой системы относительно независимых переменных Y1 … Y5

14) первое уравнение имеет два решения (с учетом остальных переменных – две группы решений): (0,0,*) и (1,1,*), где * обозначает остальные переменные, которые могут быть любыми

15) второе уравнение тоже имеет две группы решений: (x1,0,0,*) и (x1,1,1,*), где x1 обозначает некоторое значение переменной x1

16) теперь ищем решения, которые удовлетворяют и первому, и второму уравнению; очевидно, что их всего 2: (0,0,0,*) и (1,1,1,*)

17) рассуждая дальше аналогичным образом, приходим к выводу, что система имеет всего два решения относительно переменных Y1 … Y5: все нули и все единицы

18) теперь нужно получить количество решений в исходных переменных, X1 … X10; для этого вспомним, что переменные Y1 … Y5 независимы;

19) предположим, что значение Y1 известно (0 или 1); поскольку , по таблице истинности операции «эквивалентность» (истина, когда два значения одинаковы), есть две соответствующих пары (X1;X2) (как для случая Y1 = 0, так и для случая Y1 = 1)

20) у нас есть 5 переменных Y1 … Y5, каждая их комбинация дает 2 допустимых пары (X1;X2), 2 пары (X3;X4), 2 пары (X5;X6), 2 пары (X7;X8) и 2 пары (X9;X10), то есть всего 25 = 32 комбинации исходных переменных

21) таким образом, общее количество решений равно 2 ·32 = 64

22) ответ: 64 решения

Решение (табличный метод):

1) так же, как и в предыдущем варианте, с помощью замену переменных сведем систему к виду:

(Y1 ºY2) = 1

(Y2 ºY3) = 1

(Y3 ºY4) = 1

(Y4 ºY5) = 1

2) рассмотрим все решения первого уравнения по таблице истинности:

Y2 Y1

3) строчки, выделенные красным фоном, не удовлетворяют условию, поэтому дальше их рассматривать не будем

4) теперь подключаем третью переменную и второе уравнение:

Y3 Y2 Y1
?
?

5) при каких значениях переменной X3 будет верно условие? Очевидно, что на это уже не влияет Y­1 (этот столбец выделен зеленым цветом). Cразу получаем два решения:

X3 X2 X1

6) как видно из таблицы, каждая строчка предыдущей таблицы дает одно решение при подключении очередного уравнения, поэтому для любого количества переменных система имеет 2 решения – все нули и все единицы

7) так же, как и в предыдущем способе, переходим к исходным переменным и находим общее количество решений: 2 ·32 = 64

8) ответ: 64 решения

Еще пример задания:

Сколько различных решений имеет система уравнений

(X2 º X1) Ú (X2 Ù X3) Ú (X2 Ù X3)= 1

(X3 º X1) Ú (X3 Ù X4) Ú (X3 Ù X4)= 1

...

(X9 º X1) Ú (X9 Ù X10) Ú (X9 Ù X10)= 1

(X10 º X1) = 0

где x1, x2, …, x10 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Решение (табличный метод):

1) количество комбинаций 10 логических переменных равно 210 = 1024, поэтому вариант с построением полной таблицы истинности отпадает сразу

2) перепишем уравнения, используя более простые обозначения операций

...

3) заметим, что по свойству операции эквивалентности , поэтому уравнения можно переписать в виде

...


Поделиться:

Дата добавления: 2015-09-14; просмотров: 49; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты