Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Экстремум функции двух независимых переменных

Читайте также:
  1. Foreign Office – структура, функции…..
  2. III. Вегетативные функции НС.
  3. III. Функции полномочного представителя
  4. Internet, его функции. Web-броузеры. Поиск информации в Internet.
  5. SQL-функции
  6. Автоматизированное рабочее место. Его состав, функции, аппаратное и программное обеспечение.
  7. Агрегирующие функции языка SQL
  8. Адгезивные молекулы и их основные функции
  9. Акцизы,их роль и функции в налоговой системе. Понятие налогоплательщиков для целей исчесления акцизов.Понятие подакцихных товаров.
  10. Анализ переходных процессов в электрических цепей постоянного тока методом переменных состояния.

Функция z = f(x, у) имеет максимум (минимум)в точке , если значение функции в этой точке является наибольшим (наименьшим) по сравнению с другими значениями функции из окрестности точки .

Максимумы и минимумы функции называются экстремумами,а точка экстремальной точкой.

Теорема(необходимые условия экстремума). Если z = f(x, у) дифференцируемая функция и достигает в точке М00, у0) экстремума, то ее частные производные первого порядка в этой точке равны нулю:

, .

Точки, в которых частные производные первого порядка обращаются в нуль (или не существуют), называются критическимиили стационарными. Исследование их на экстремум проводят с помощью достаточных условий существования экстремума функции двух переменных.

Пусть – стационарная точка функции z= f(x, у). Для ее исследования сначала вычисляют частные производные второго порядка в точке :

; ; ,

а затем дискриминант = АС — В2. Тогда достаточные условия экстремумафункции z = f(x, у) в стационарной точке М00, у0) запишутся в следующем виде:

1) >0 – экстремум есть, при этом, если А>0 (или С>0 при А=0) в точке функция имеет минимум, а если А<0 (или С<0 при А = 0) – максимум;

2) < 0 – экстремума нет;

3) = 0 – требуются дополнительные исследования.


Дата добавления: 2015-02-10; просмотров: 26; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Функции двух независимых переменных | Го порядка с постоянными коэффициентами
lektsii.com - Лекции.Ком - 2014-2017 год. (0.009 сек.) Главная страница Случайная страница Контакты