Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Формула Бейеса (формула гипотез)

Читайте также:
  1. IV.1.3. Формула Клина
  2. Барометрическая формула. Распределение Больцмана
  3. Барометрическая формула. Распределение Больцмана. Распределение Максвелла - Больцмана.
  4. Барометрическая формула: .
  5. Гіпотеза й формула де Брoйля. Дослідне обґрунтування корпускулярно-хвильового дуалізму речовини
  6. Глобальная формула Тейлора с остаточным членом различного вида.
  7. Давление под изогнутой поверхностью жидкости. Формула Лапласа.
  8. Дифракція рентгенівських променів на просторовій решітці. Формула Вульфа - Брегга
  9. Дифракція рентгенівських променів на просторовій решітці. Формула Вульфа-Брегга
  10. Занятие 5. Формула полной вероятности.

Пусть имеется полная группа несовместных гипотез с известными вероятностями их наступления . Пусть в результате опыта наступило событие А, условные вероятности которого по каждой из гипотез известны, т.е. известны вероятности .

Требуется определить, какие вероятности имеют гипотезы относительно события А, т.е. условные вероятности .

 

Теорема. Вероятность гипотезы после испытания равна произведению вероятности гипотезы до испытания на соответствующую ей условную вероятность события, которое произошло при испытании, деленному на полную вероятность этого события.

 

Эта формула называется формулой Бейеса.

 

Доказательство.

 

По Теореме умножения вероятностей получаем:

 

Тогда если .

Для нахождения вероятности P(A) используем формулу полной вероятности.

 

Если до испытания все гипотезы равновероятны с вероятностью , то формула Бейеса принимает вид:

 


Дата добавления: 2014-12-03; просмотров: 22; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Формула полной вероятности. Пусть некоторое событие А может произойти вместе с одним из несовместных событий , составляющих полную группу событий | Повторение испытаний. Формула Бернулли
lektsii.com - Лекции.Ком - 2014-2018 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты