Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Метрология – наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.




Основным источником наркотических анальгетиков являются алкалоиды опия, выделяемые из опийного мака. Синтез морфина впервые был осуществлен в 1950 году, но не нашел промышленного применения в виду своей сложности. Производные морфина кодеин и этилморфин синтезируют из морфина. Более простые заменители морфина промедол и лидол получают путем химических превращений.

Эта группа соединений характеризуется сильной анальгезирующей активностью, позволяющей использовать их в экстраординарных случаях (хирургическом вмешательстве, ранениях, злокачественных новообразованиях, сопровождающихся сильным болевым синдромом).

Другой характеристикой соединений этого типа является влияние на центральную нервную систему, выражающуюся в эйфории и, в конечном счете, появлением физической и психологической зависимости (наркомания), что ограничивает их длительное применение, несмотря на имеющуюся их эффективность.

Развитие синдрома физической зависимости приводит к тяжелым последствиям – синдрому абстиненции («ломка»), при прекращении введения препарата.

Еще одна особенность – наличие специфических антагонистов, способных снять как анальгезирующее действие, так и токсические явления, связанные с применением этих препаратов.

В малых концентрациях, не достаточных для того, чтобы вызвать сон, морфин вызывает эйфорию и освобождает от боли – анальгезию.

Морфин обладает выраженной стереоселективностью.

или

В молекуле этого алкалоида 5 асимметрических атомов углерода (С5, С6, С9, С13, С14). Такое количество асимметрических атомов теоретически допускает возможность существования 32 оптических изомеров морфина, но ограничения, которые налагаются мостиковой этиламинной цепочкой, создающей кольцевую систему С913, приводит к тому, что морфин существует лишь в виде 16 оптических изомеров. Центры С5, С6, С9 являются левовращающими, а С13, С14 – правовращающими.

Одной из причин отличающейся физиологической активности стереоизомерных лекарственных препаратов является различия в их проникновении в организм. Они могут быть связаны как с особенностями строения и свойствами биологических мембран, которые сами построены из оптически активного асимметрического материала, так и с наличием в мембранах специальных систем, осуществляющих перенос метаболитов через мембраны.

Морфин и близкие алкалоиды – яркий пример влияния пространственной конформации на физиологическую активность соединения. Морфин, содержащийся в естественном растительном сырье, является одним из левовращающих изомеров. Введение этого препарата вызывает сильную анальгезию, а синтезированный правовращающих изомер морфина полностью лишен каких бы то ни было анальгезирующих свойств.

Молекулу морфина много раз модифицировали. При этом удавалось получать соединения со значительно большей анальгезирующей активностью. К сожалению повышение активности всегда сопровождалось повышением токсичности, способностью вызывать пристрастие, к сокращению продолжительности эффекта и другим нежелательным явлениям.

R R’ Активность, в относительных единицах Название препарата
НО НО морфин
CH3O НО кодеин
C2H5O НО дионин
НО CH3O гетерокодеин
НО OCOCH3 α‑ацетилморфин
OCOCH3 OCOCH3 диаморфин, героин

Токсичность препарата оценивается дозой LD50, при введении которой наступает гибель 50% экспериментальных животных.

Анальгин обладает значительно меньшими анальгезирующими свойствами, чем морфин, но часто достаточными, чтобы помочь при болях. Кроме того, кодеин оказывает угнетающее действие на кашлевой центр, тем самым снижается частота кашля. Кодеин в меньшей степени чем морфин, но вызывает зависимость. Отсюда, для его применения те же ограничения, что и для других наркотических анальгетиков.

При передозировке морфина имеет место угнетение дыхания и снижение артериального давления, тошнота.

Решающее значение в проявлении анальгетической активности молекулы морфина имеет наличие свободной фенольной группы. Так при изменении R в положении 3 молекулы кодеина в ряду метил – этил – ацил (CH3-, C2H5-, -COCH3) наблюдается снижение обезболивающего эффекта. Вероятно, это связано с потерей стерического соответствия препарата с местом связывания.

Удаление кольца Е в структуре морфина приводит к полному исчезновению активности. Этот факт свидетельствует о важности наличия основного азота в данной структуре для проявления анальгетической активности. При удалении из структуры колец С и D, молекула преобразуется в бензоморфаны, обладающие умеренной анальгетической активностью и низким наркотическим и галлюциногенным действием.

Наиболее важными функциональными группами в структуре морфина, необходимыми для проявления анальгетического эффекта, являются

a) водород фенольного ядра, для образования водородных связей

b) и само фенольное ядро, которое участвует в Ван-дер-ваальсовых связях.

c) азот, обеспечивает ионное взаимодействие

За угнетение центров болевой чувствительности и блокирование импульсов в коре головного мозга, при воздействии на них анальгетических средств, ответственны опиатные рецепторы. Существование их в мозге показано в опытах на мышах, при исследовании стереоспецифического взаимодействия аналогов морфина – агониста леворфанола и антагониста налоксона.

Был выделен липопротеин с молекулярной массой 60 тысяч и предположено, что агонист вызывает в нем конформационные изменения, в результате которых биологическим ответом является анальгезия. Лигандами опиатных рецепторов являются нейропептиды, которые связываются с опиатным рецептором и оказывают анальгезирующее действие. Их эффект, как это вообще характерно для агонистов, блокируется антагонистами опиатов.

Есть предположение, что многие анальгетики, но не морфин, который взаимодействует с опиатными рецепторами, не связываются с самими рецепторами, а являются ингибиторами фермента, разрушающего нейропептиды, в частности пентапептиды. Таким образом, эти анальгетики повышают уровень этих нейропептидов и оказывают обезболивающий эффект. При гидролизе в мозге человека липопротеина, образуются анальгетические полипептиды – эндорфины. Наиболее активный из них β‑эндорфин вдвое активнее морфина и вызывает более длительную анальгезию, которая снимается налоксоном. Некоторые ученые рассматривают β‑эндорфин в качестве гормона, подавляющего высвобождение других нейромедиаторов.

В организме человека анальгетики начинают выделяться только как реакция на возникновение боли, т.е. их взаимодействие с опиатными рецепторами может рассматриваться как компенсаторный эффект.

Возникновение при применении морфина психической зависимости направило изыскания учеными более простых аналогов, не вызывающих эйфорию. Например, синтез промидола и лидола.

При синтезе промидола исходят из ацетона и винилацетилена, конденсация которых приводит к 2‑метилгексадиен‑2,5‑ин‑3. Далее гидратация по Кучерову дает кетон, при взаимодействии которого с метиламином образуется замещенный пиперидон. Реакция последнего с фениллитием дает замещенный пиперидол, который ацилируют пропионилхлоридом.

Недостаток указанного способа – получение на конечной стадии трех изомеров, вследствие чего выделение целевого продукта затрудняется.

В этом синтезе лидола исходят из бензилцианида, конденсация которого с бисхлорэтилметиламином и последующим омылением продуктов конденсации нитрильной группы дают кислоту, а этерификация этой кислоты приводит к лидолу.

Характер связывания опийных анальгетиков с рецепторами существенно зависит от структурных особенностей конкретного соединения. Так полные агонисты рецепторов – морфин, промедол. Истинным антагонистом опиатных рецепторов является налоксон. Он блокирует связывание агонистов с этими рецепторами и способен вытеснить их, нарушая их рецептивные взаимодействия. Благодаря этому свойству налоксон может использоваться при интоксикации, вызванной наркотическими анальгетиками.

Однако есть и препараты обладающие смешанной активностью, давая в зависимости от типа рецепторов агонистический или антагонистический эффекты. Например, соединение с тривиальным названием налорфин вследствие агонистического эффекта оказывает анальгетический эффект, но слабее чем морфин. С другой стороны он ослабляет угнетение дыхание и снижение артериального давления, вызванное морфином.

Метрология – наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Метрология – metron – мера; logos – понятие (греч.)

В зависимости от решаемых задач различают три раздела метрологии:

- теоретический;

- законодательный;

- прикладной.

В практической жизни человек всюду имеет дело с измерениями. На каждом шагу встречаются и известны с незапамятных времен измерения таких величин, как длина, объем, вес, время и др.

Велико значение измерений в современном обществе. Они служат не только основой научно-технических знаний, но имеют первостепенное значение для учета материальных и планирования, для внутренней и внешней торговли, для обеспечения качества продукции, взаимозаменяемости узлов и деталей и совершенствования технологии, для обеспечения безопасности труда и других видов человеческой деятельности.

Метрология имеет большое значение для прогресса естественных и технических наук, т.к. повышение точности измерений – одно из средств совершенствования путей познания природы человеком, открытий и практического применения точных знаний.

Основными задачами метрологии являются (по РМГ 29-99):

- установление единиц физических величин, государственных эталонов и образцовых средств измерений;

- разработка теории, методов и средств измерений и контроля;

- обеспечение единства измерений;

- разработка методов оценки погрешностей, состояния средств измерения и контроля;

- разработка методов передачи размеров единиц от эталонов или образцовых средств измерений рабочим средствам измерений.

 

Краткая история развития метрологии

Потребность в измерениях возникла в незапамятные времена. Для этого в первую очередь использовались подручные средства. Например, единица весадрагоценных камнейкарат, что в переводе с языков древнего юга-востока означает «семя боба», «горошина»; единица аптекарского веса гран, что в переводе с латинского, французского, английского и испанского означает «зерно».

Многие меры имели антропометрическое происхождение или были связаны с конкретной трудовой деятельностью человека. Так, в Киевской Руси применялись в обиходе вершок длина фаланги указательного пальца;пядьрасстояние между концами вытянутых большого и указательного пальцев;локотьрасстояние от локтя до конца среднего пальца;саженьот «сягать»,«достигать» т.е. можно достать; косая саженьпредел того, что можно достать: расстояние от подошвы левой ноги до конца среднего пальца вытянутой вверх правой руки; верста – от «верти», «поворачивая» плуг обратно, длина борозды.

Древние вавилоняне установили год, месяц, час. Впоследствии 1/86400 часть среднего периода обращения Земли вокруг своей оси (суток) получила название секунды.

В Вавилоне во II в. до н.э. время измерялось в минах, которая равнялась промежутку времени ( равному примерно двум астрономическим часам), за который из принятых в Вавилоне водяных часов вытекала «мина» воды, масса которой составляла около 500 г. Затем мина сократилась и превратилась в привычную для нас минуту. Со временем водяные часы уступили место песочным, а затем более сложным маятниковым механизмам.

Важнейшим метрологическим документом в России является Двинская грамота Ивана Грозного (1550 г.). В ней регламентированы правила хранения и передачи размера новой меры сыпучих веществ – осьмины. Ее медные экземляры рассылались по городам на хранение выборным людям – старостам, соцким, целовальникам. С этих мер надлежало сделать клейменые деревянные копии для городских померщиков, а с тех, в свою очередь, - деревянные копии для использования в обиходе.

Метрологической реформой Петра I к обращению в России были допущены английские меры, получившие особенно широкое распространение на флоте и в кораблестроении, - футы, дюймы. В 1736 г. по решению сената была образована Комиссия весов и мер под председательством главного директора Монетного двора графа М.Г.Головкина. В состав комиссии входил Леонард Эйлер. В качестве исходных мер комиссия изготовила медный аршин и деревянную сажень, за меру веществ было принято ведро московского каменномостского питейного двора. Важнейшим шагом, подытожившим работу комиссии, было создание русского эталонного фунта.

Идея построения системы измерений на десятичной основе принадлежит французскому астроному Г.Мутону, жившему в XVII в. Позже было предложено принять в качестве единицы длины одну сорокамиллионную часть земного меридиана. На основе единственной единицы – метра – строилась вся система, получившая название метрической.

В России указом «О системе Российских мер и весов» (1835 г.) были утверждены эталоны длины и массы – платиновая сажень и платиновый фунт.

В соответствии с международной Метрологической конвенцией подписанной в 1875 г., Россия получилаплатиноиридиевые эталоны единицы массы №12 и 26 и эталоны единицы длины №11 и 28, которые были доставлены в новое здание Депо образцовых мер и весов. В 1892 г. Управляющим депо был назначен Д. И. Менделеев, которую он в 1893 г. Преобразует в Главную палату мер и весов – одно из первых в мире научно-исследовательских учреждений метрологического профиля.

Метрическая система в России была введена в 1918 г. Декретом Совета Народных Комиссаров «О введении Международной метрической системы мер и весов». Дальнейшее развитие метрологии в России связано с созданием системы и органов служб стандартизации.

Развитие естественных наук привело к появлению все новых и новых средств измерений, а они, в свою очередь, стимулировали развитие наук, становясь все более мощным средством исследования.

 

Правовые основы метрологической деятельности в РФ

Законодательная база метрологии основывается на следующих правовых актах:

1 Закон РФ «Об обеспечении единства измерений» от 27.04.93.№4871-1 в редакции 2003 г.

2 РМГ 29-99. Государственная система обеспечения единства измерений. Метрология. Основные термины и определения.

3 МИ 2247-93 ГСИ. Метрология. Основные термины и определения.

4 ГОСТ 8.417-81 ГСИ. Единицы физических величин.

5 ПР 50.2.006-94 ГСИ. Поверка средств измерений. Организация и порядок проведения.

6 ПР 50.2.009-94 ГСИ. Порядок проведения испытаний и утверждения типа средств измерения.

7 ПР 50.2.014-94 ГСИ. Аккредитация метрологических служб на право поверки средств измерений.

8 МИ 2277-94 ГСИ. Система сертификации средств измерений. Основные положения и порядок проведения работ.

9 ПР 50.2.002-94 ГСИ. Порядок осуществления государственного метрологического надзора за выпуском, состоянием и применением средств измерений, аттестованными методиками выполнения измерений, эталонами и соблюдением метрологических правил и норм.

10 ПР 50.2.004-94 ГСИ. Порядок осуществления государственного метрологического надзора за количеством фасованных товаров в упаковках любого вида при их расфасовке и продаже.

11 ПР 50.2.017-95 ГСИ. Положение о российской системе калибровки.

12 Постановление Госстандарта России от 8 февраля 1994 г. № 8 «Порядок лицензирования деятельности по изготовлению, ремонту, продаже и прокату средств измерений» (зарегистрировано в Минюсте РФ 9.12.94 № 741).

13 Постановление Госстандарта России от 08.02.94. № 94 «Порядок осуществления государственного метрологического надзора за количеством товаров, отчуждаемых при совершении торговых операций» (09.12.94 № 740).

14 Постановление Госстандарта России от 28.12.95 № 95 «Порядок аккредитации метрологических служб юридических лиц на право проведения калибровочных работ» (28.02.96 № 1037).

15 Постановление Госстандарта России от 8.02.94 № 8 «Требования к государственным центрам испытаний средств измерений и порядок их аккредитации» (13.07.94 № 635).

16 ИСО 10012-1:1992. «Требования, гарантирующие качество измерительного оборудования. – Часть 1. Система подтверждения метрологической пригодности измерительного оборудования».

МИ – рекомендации государственных метрологических научных центров

 

Закон «Об обеспечении единства измерений» осуществляет регулирование отношений, связанных с обеспечением единства измерений в РФ, в соответствии с Конституцией РФ.

Основные статьи закона устанавливают:

- основные понятия, применяемые в Законе;

- организационную структуру государственного управления обеспечением единства измерений;

- нормативные документы по обеспечению единства измерений;

- единицы величин и государственные эталоны единиц величин;

- средства и методики измерений.


Поделиться:

Дата добавления: 2014-12-03; просмотров: 118; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты