Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Активность и коэффициентов активности компонента

Читайте также:
  1. R Уровень активности больных инфарктом миокарда
  2. RВозвращение пациентов к исходному уровню активности
  3. Активности, анализ финансовой устойчивости
  4. Активность
  5. АКТИВНОСТЬ ВОДЫ НЕКОТОРЫХ ВИДОВ ПРОДУКЦИИ ОБЩЕСТВЕННОГО ПИТАНИЯ
  6. Активность личности
  7. Анализ деловой активности
  8. Анализ деловой активности предприятия
  9. Анализ индивидуальных рынков. Конкуренция и развитие деловой активности населения

Активность компонентов раствора — эффективная (кажущаяся) концентрация компонентов с учётом различных взаимодействий между ними в растворе, то есть с учётом отклонения поведения системы от модели идеального раствора.

Активность отличается от общей концентрации на некоторую величину. Отношение активности ( ) к общей концентрации вещества в растворе называется коэффициентом активности:

Коэффициент активности — отношение активности данного компонента раствора к его концентрации, характеризующее отклонение свойств реальных растворов от свойств идеальных растворов. В идеальных растворах и при бесконечном разбавлении К. а. равен единице. Приближенные значения К. а. вычисляются по уравнению Дебая — Хюккеля.
где γj — коэффициент активности ионов j -того рода; z — валентность, А — константа, приближенно равная для водных растворов 0,5 (при 20° С), J — ионная сила раствора, рассчитываемая по формуле:

где С — концентрация иона, а индексы 1, 2... n — разные ионы.

 

64. Выбор стандартных состояний
При использовании активности и коэффициента активности важную роль играет выбор стандартного состояния компонента, то есть состояния, в котором
Для растворов взаимно неограниченно растворимых жидкостей в качестве стандартного может быть выбрано состояние чистого компонента:

при и

Иногда такой выбор называют симметричной системой стандартного состояния.
В случае, если рассматривается раствор газа и или твердого вещества в жидкости, мольную долю растворенного вещества нельзя изменять до единицы. Тогда для растворителя — жидкости — стандартное состояние может быть выбрано так же, как показано выше, а для растворенного вещества за стандартное состояние принимают гипотетический раствор с концентрацией, равной единице, но сохраняющий свойства предельно разбавленного раствора. Иначе говоря, это такое состояние, для которого давление пара численно равно константе Генри:

Таким образом, для растворителя и растворенного вещества здесь принимаются разные стандартные состояния — это несимметричная система стандартных состояний.
В системах с ограниченной растворимостью за стандартное может быть принято состояние компонента в насыщенном растворе:

В засимости от исследуемой системы, в качестве стандартного может быть выбрано и другое состояние, например, для серы при исследовании богатых сульфидных расплавов — состояние серы в стехиометрическом сульфиде. При рассмотрении результатов эксперимента, использовании справочных данных и т. п. следует обязательно указывать, какое именно состояние компонента принято за стандартное.



Численное значение активности и коэффициентов термодинамической активности зависит от способа выбора стандартного состояния. Стандартное состояние может быть выбрано произвольно, но оно должно быть таким, чтобы полученными в последствии активностью и термодинамическим коэффициентом активности было удобно пользоваться.
Существует два основных способа выбора стандартного состояния:
1.В симметричном способе за стандартное состояние любого компонента выбирают состояние чистого (индивидуального) компонента при температуре системы (раствора). Тогда в стандартном состоянии имеем:
, , .
Способ чаще используют в термодинамике растворов неэлектролитов.
2.В соответствии сассиметричным (не симметричным) способом стандартное состояние различно выбирают для различных компонентов системы.
Для растворителя стандартное состояние выбирают так же, как и в симметричном способе, т.е.: , , .
Для растворенного вещества за стандартное состояние выбирают состояние данного вещества в бесконечно разбавленном растворе, т.е.:



, ,

Этот способ используется в термодинамике растворов электролитов

65. Методы определения коэффициентов активности
Экспериментальные методы определения активности компонентов в растворе основаны на изучении какого-либо гетерогенного равновесия в системе. При рассмотрении этих методов следует помнить, что в условиях равновесия химические потенциалы i-го компонента в разных фазах (I и II) равны:

Это соотношение является исходной точкой для вывода расчетных уравнений в некоторых из методов определения активности. Кроме того, активности компонентов в некоторой фазе связаны между собой уравнением:

По равновесному давлению пара
В основе этого метода лежит соотношение:

где — парциальное давление пара компонента над раствором, а — давление пара этого компонента для стандартного состояния (см. выше). Соответственно, если за стандартное состояние принято состояние чистого компонента, то .
Экспериментальные методы определения давления пара компонентов над раствором весьма разнообразны; выбор того или иного из них определяется, в частности, исследуемой системой (водный раствор или иная низкотемпературная система, либо расплавленный металл, шлак, штейн и т. п.).
По повышению температуры кипения раствора
Температура кипения раствора выше температуры кипения чистого растворителя . Данные об изменении температуры кипения раствора могут быть использованы для расчета активности растворителя, в соответствии с уравнением:
,
где — теплота испарения растворителя, в интервале от температуры кипения чистого растворителя до температуры кипения раствора принимаемая постоянной. Индексом «1» обычно обозначается растворитель.
По понижению температуры замерзания раствора
Температура замерзания раствора ниже температуры замерзания чистого растворителя . Соответственно, активность растворителя можно рассчитать, используя зависимость:

,

где — теплота плавления растворителя.
По осмотическому давлению раствора
Величина осмотического давления раствора может быть использована для определения активности растворителя в соответствии с соотношением:

где — осмотическое давление, — парциальный молярный объём растворителя.

По распределению компонента между конденсированными фазами
Активность компонента раствора можно определить, изучая равновесное распределение его между двумя контактирующими конденсированными фазами (различными растворителями, сплавом и шлаком, шлаком и штейном и т. п.), одна из которых — исследуемый раствор, а для другой активность или коэффициент активности уже известны. В общем случае:

В частности, если выбор стандартного состояния компонента для фаз таков, что , это выражение принимает более простой вид:

Экспериментально в этом методе определяют равновесные концентрации компонента или коэффициент распределения компонента между растворами.
По равновесию химической реакции с газовой фазой
При исследовании оксидных расплавов активность компонентов часто определяют, используя следующие химические реакции:
MeO + H2 = Me + H2O
MeO + CO = Me + CO2
Для первой из приведенных реакций константа равновесия имеет вид:

Если оксидный и металлический расплавы взаимно нерастворимы и восстанавливается индивидуальный оксид, то , и тогда:

Если металл выделяется в виде сплава с другими компонентами или растворяется в фазе-коллекторе, его активность не равна единице и формула принимает вид:

Активность металла в сплаве здесь должна быть известна из независимых измерений.
Опытным путем в данном методе определяют отношение .
Кроме того, активность оксидного компонента связана с равновесным давлением кислорода над расплавом, с учётом реакций в газовой фазе, например:

или

Тогда можно показать, что

Для сульфидных расплавов используют реакцию:

или (значительно реже):

По значению э. д. с. гальванического элемента
Электродвижущая сила концентрационной цепи с переносом может быть выражена следующим соотношением:

Соответственно, такую цепь можно использовать для нахождения активности и коэффициента активности. В некоторых случаях (например, для сложных сульфидных расплавов) побочное взаимодейтсвие электролита с электродами может приводить к невозможности определения активности компонентов по ЭДС цепи, тогда используют концентрационные цепи без переноса. Нахождение активности компонента по ЭДС концентрационной цепи без переноса — один из самых точных способов определения активности[8] .

66. Коллигативные свойства растворов, их термодинамическое обоснование, практическое использование для определения молекулярной массы растворённого вещества.

Свойства растворов, которые зависят только от концентрации частиц в растворе и не зависят от природы растворенного вещества, называются коллигативными.

Растворы, образованные частицами строго одинакового размера, между которыми действуют примерно одинаковые силы межмолекулярного взаимодействия, не происходит химического взаимодействия, изменения температуры и объема называются идеальными. К идеальным растворам стремятся очень разбавленные растворы.

Коллигативные свойства разбавленных растворов могут быть описаны количественно и выражены в виде законов. К ним относятся:

· осмотическое давление

· давление насыщенного пара растворителя над раствором

· температура кристаллизации раствора

· температура кипения раствора


Дата добавления: 2015-01-29; просмотров: 55; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Растворимость газов в жидкостях | Осмос. Осмотическое давление.
lektsii.com - Лекции.Ком - 2014-2018 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты