Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Высокотемпературное упрочнение окатышей




Основная цель обжига – упрочнение до такой степени, чтобы выдерживать транспортировку, перегрузки и доменную плавку без значительного разрушения. При этом в отличие от агломерации нельзя доводить процесс до спекания материалов. Если не ограничить верхний предел температуры 1200-1350°С произойдет оплавление окатышей и сваривание их в крупные глыбы. При более низкой температуре – понижение прочности окатышей.

Процессы, происходящие при нагреве окатышей. При нагреве окатышей протекает ряд процессов – разложение гидратов и карбонатов, окисление оксидов железа, твердофазные реакции.

Разложение известняка.При быстром нагреве (200-420 °С/мин) в нейтральной или окислительной атмосфере диоксид углерода начинает выделяться из окатышей при 800-850 °С, что связано с замедлением прогрева окатышей. При нагреве со скоростью 80 °С/мин температура разложения известняка снижается до 730-750°С. Максимум скорости выделения диоксида углерода соответствует 1130-1170°С при быстром нагреве и 950-970 °С при медленном нагреве. Общее время выделения CO2 составляет 5,5-9,0 мин в первом случае и 7-12 мин во втором.

При окислительном упрочняющем обжиге имеет место окисление магнетита до гематита, сопровождающееся заметным выделением тепла:

2Fe3O4 +1/2O2 = 3Fe2O3 + 231 МДж.

Скорость процесса зависит от удельной поверхности пор образцов и состава газовой фазы. Практика обжига показала, что в реальных условиях максимальная степень окисления окатышей соответствует температурному интервалу 900-1100 °С.

Важной причиной замедления окисления магнетита в окатышах являются размягчение и частичное оплавление окатышей (рис)

Твердофазные реакциипри обжиге окатышей приобретают заметное развитие. При окислительном обжиге неофлюсованных окатышей из магнетитовых концентратов ведущую роль играет реакция между Fe3O4 и SiO2 с образованием силикатов железа. Степень протекания этой реакции зависит от скорости окисления магнетита, так как гематит и кварц не реагируют. При обжиге офлюсованных окатышей в реакции участвуют Fe3O4, Fe2O3, CaO, MgO и SiO2, причем значение приобретает реакция образования ферритов кальция. Образующиеся соединения (силикаты железа и кальция, ферриты кальция) являются легкоплавкими. Поскольку при обжиге офлюсованных окатышей количество легкоплавких соединений больше, температура обжига окатышей не должна быть чрезмерно высокой. Иначе развиваются процессы оплавления окатышей, сплавления их в прочные гроздья и конгломераты, охлаждение и съем которых с обжиговых устройств, а также транспортировка и проплавка значительно затрудняются.

Снижение температуры обжига приводит к падению прочности окатышей и появлению в структуре окатышей свободной извести, гидратация которой при хранении окатышей на воздухе сопровождается их разрушением. В связи с этим интервал температур обжига офлюсованных окатышей меньше, чем не офлюсованных.

К технологии обжига офлюсованных известняком окатышей предъявляют ряд повышенных требований: тонкий помол известняка (для более полного усвоения извести), улучшенное качество смешения шихты, небольшой интервал температуры обжига. Однако добавка флюса к шихте приводит к улучшению качества окатышей, особенно прочности при хранении и восстановлении.

Механизм и кинетика упрочнения железорудных окатышей.В работе Ю.С. Юсфина было показано, что упрочнение окатышей является усложненным вариантом процесса спекания дисперсных частиц. В отличие от спекания «классических» порошковых шихт обжиг окатышей имеет ряд особенностей, важнейшими из которых являются протекание в ходе обжига химических реакций, многокомпонентный состав шихты, выделение значительного количества газа, малая продолжительность процесса. Шихта для обжига окатышей представлена частицами очень малого размера, следовательно, обладает большой избыточной поверхностной энергией. Спекание является сложным самопроизвольным процессом приближения дисперсной системы (в данном случае окатыша) к равновесию. К причинам отклонения от равновесия, кроме избыточной поверхностной энергии, относится наличие макродефектов (пор), концентрационной неоднородности, микродефектов кристаллической решетки и др. Многообразием дефектов в системе объясняется и отсутствие единого механизма из залечивания.

При обжиге окатышей высокотемпературное спекание частиц в прочную гранулу может проходить в двух режимах: с отсутствием жидкой фазы (твердофазное спекание) и при наличии некоторого количества расплава (жидкофазное спекание). Температурная граница, разделяющая области твердофазного и жидкофазного спекания, зависит от окислительно-восстановительного потенциала газовой фазы, от количества и состава пустой породы. Для окислденных окатышей температурная граница колеблется в интервале 1150-1250 °С.

Объективным критерием протекания спекания частиц и упрочнения окатышей является длина контактов частиц шихты в окатыше, которая выражается в суммарной (или удельной) поверхности пор в окатыше и определяет его прочность. Протяженность границ тем больше, чем меньше поверхность пор и меньше размер зерна. Поэтому ранее предложенная трактовка упрочнения окатышей как результата рекристаллизации (роста размера) зерен оксидов железа является ошибочной. Зависимость прочностных свойств окатышей (офлюсованных и неофлюсованных) из Лебединского концентрата от удельной поверхности пор, замеренной методом ртутной порометрии (рис 3.57), имеет вид

Pхол = Ae-bS,

где Pхол – холодная прочность, Н/окатыш; S – удельная поверхность пор, м2/г; A и b – коэффициенты.

На первой стадии спекания упрочнение протекает с уменьшением суммарного объема пор, поэтому для малого времени процесса (до 15-20 мин) изменение объемной пористости является характеристическим параметром упрочнения окатышей. На заключительных стадиях спекания объем пор может не изменяться при исчезновении мелких и росте размера крупных пор (процесс коалесценции). Поверхность пор при этом продолжает снижаться. В режиме твердофазного спекания обычно упрочняются окатыши нижних слоев конвейерной машины, а также неофлюсованные окатыши из богатых концентратов с низким (менее 2-3%) содержанием пустой породы. Твердофазное спекание оксидов железа начинает проявляться при 800-900 °С. При этом активно спекаются как гематит, так и матнетит. Кинетические закономерности твердофазного спекания обычно изучают, замеряя усадку окатышей в процессе обжига.

Скорости твердофазного упрочнения сравнительно низки. За реальное время обжига окатыши, изготовленные из концентратов, содержащих более 3% пустой породы, не успевают получить высокую «холодную» (т.е. при транспортировке и хранении) и «горячую» (т.е. при восстановительно-тепловой обработке) прочность.


Поделиться:

Дата добавления: 2015-09-13; просмотров: 93; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты