Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Основы гидростатики 2.1. Силы, действующие в жидкости




Поскольку жидкость обладает свойством текучести и легко деформируется под дей­ствием минимальных сил, то в жидкости не могут действовать сосредоточенные силы, а возможно существование лишь сил распределённых по объёму (массе) или по поверхно­сти. В связи с этим действующие на жидкости распределённые силы являются по отноше­нию к жидкости внешними. По характеру действия силы можно разделить на две катего­рии: массовые силы и поверхностные.

Массовые силы пропорциональны массе тела и действуют на каждую жидкую час­тицу этой жидкости. К категории массовых сил относятся силы тяжести и силы инерции переносного движения. Величина массовых сил, отнесённая к единице массы жидкости, носит название единичной массовой силы. Таким образом, в данном случае понятие о единичной массовой силе совпадает с определением ускорения. Если жидкость, находится под действием только сил тяжести, то единичной силой является ускорение свободного падения:

где М' - масса жидкости

Если жидкость находится в сосуде, движущимся с некоторым ускорением а, то жид­кость в сосуде будет обладать таким же ускорением (ускорением переносного движения):

Поверхностные силы равномерно распределены по поверхности и пропорциональны площади этой поверхности. Эти силы, действуют со стороны соседних объёмов жидкой среды, твёрдых тел или газовой среды. В общем случае поверхностные силы имеют две составляющие нормальную и тангенциальную. Единичная поверхностная сила называется напряжением. Нормальная составляющая поверхностных сил называется силой давления Р, а напряжение (единичная сила) называется давлением:

5

где: S - площадь поверхности.

Напряжение тангенциальной составляющей поверхностной силы Т (касательное на­пряжение ) определяется аналогичным образом (в покоящейся жидкости Т=0).

Величина давления (иногда в литературе называется гидростатическим давлением) в системе СИ измеряется в паскалях.

Поскольку эта величина очень мала, то величину давления принято измерять в мега-паскалях МПа

1МПа = \ 106 Па.

В употребляемой до сих пор технической системе единиц давление измеряется в технических атмосферах, am. С,

1 am = \кГ/см2 = 0,1 МПа, 1 МПа = 10 am.

В технической системе единиц давление кроме технической атмосферы измеряется также в физических атмосферах, А.

\А = 1,033 am.

Различают давление абсолютное, избыточное и давление вакуума. Абсолютным дав­лением называется давление в точке измерения, отсчитанное от нуля. Если за уровень от­счёта принята величина атмосферного давления, то разница между абсолютным давлени­ем и атмосферным называется избыточным давлением.

Если давление, измеряемое в точке ниже величины атмосферного давления, то раз­ница между замеренным давлением и атмосферным называется давлением вакуума

Избыточное давление в жидкостях измеряется манометрами. Это весьма обширный набор измерительных приборов различной конструкции и различного исполнения. 2.2. Свойства гидростатического давления

В неподвижной жидкости возможен лишь один вид напряжения - напряжение сжа­тия. Как отмечалось ранее, жидкость в общем случае может находиться под действием двух сил - силы давления равномерно распределённой по всей внешней поверхности вы­деленного жидкого тела и массовых сил, определяемых характером переносного движе­ния. Под внешней границей жидкого тела могут пониматься как соседние тела: твёрдые (стенки сосуда или трубы, в которые помещена жидкость), газообразные (поверхность раздела между жидкостью и газовой средой), так и условные поверхности, мысленно вы­деляемые внутри самой жидкости. Действующее на внешнюю поверхность жидкости дав­ление обладает двумя основными свойствами: t

1. Давление всегда направлено по внутренней нормали к выделенной поверхности. Это свойство вытекает из самой сущности давления и доказательств не требует. Тем не менее, поясним этот постулат простым примером. Отсечём от жидкого тела часть его объ-

ёма и для сохранения равновесия оставшейся части жидкости приложим к образовав­шемуся сечению систему распределённых сил. По своей вели­чине и напрвлению действия эти силы должны обеспечить эк­ вивалентное влияние на оставшийся объём жидкости со сторо­ны отсечённой части жидкого тела. Поскольку в покоящейся

жидкости не могут существовать касательные напряжения, то приложенные к сечению силы могут быть направлены лишь по внутренней нормали к площади сечения.

2. В любой точке внутри жидкости давление по всем направлениям одинаково. Дру­гими словами величина давления в точке не зависит от ориентации площадки, на которую действует давление.

Для доказательства этого положения выде­лим в районе произвольно выбранной точки на­ходящейся внутри жидкости малый отсек жид­кости в виде тетраэдра. Три взаимно перпенди­кулярные грани отсека будут параллельны ко­ординатным плоскостям, четвёртая грань распо­ложена под произвольным углом (по отноше­нию к одной из координатных плоскостей). От­ бросим массу жидкости, находящуюся с внеш­ней стороны поверхности тетраэдра, а действие

отброшенной массы жидкости на выделенный отсек заменим силами, которые обеспечат равновесие в покоящейся жидкости. При такой замене мы сделали некоторое допущение, ввели сосредоточенные силы, действующие на грани отсека. Однако это допущение мож- . но считать справедливым ввиду малости отсека. Тогда для обеспечения равновесия на от­сек жидкости должны действовать силы давления нормальные к граням отсека ; корме того, на этот же отсек жидкости будут действовать массовые силы

характер действия которых определяется переносным движением, т.е. движе­нием сосуда, относительно которого покоится жидкость. Величина массовых сил будет

пропорциональна массе жидкости в отсеке:

Запишем уравнение равновесия отсека жидкости в проекциях на оси координат.

Выразив силы через напряжения, уравнения равновесия будут иметь следующий вид:

где: - площадь наклонной грани отсека, - проекции ускоре-

ния переносного движения на оси координат.

учитывая, что:

Уравнения равновесия примут вид:

Пренебрегая малыми величинами, получим:

3. Для жидкости находящейся в состоянии равновесия справедлив так называемый закон Паскаля утверждающий, что всякое изменение давления в какой-либо точке жидкости передаётся мгновенно и без изменения во все остальные точки жидкости.


Поделиться:

Дата добавления: 2015-02-09; просмотров: 138; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2025 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты