Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Потери напора по длине

Читайте также:
  1. Безрисковая зона - область, в которой ожидаются нулевые потери или отрицательные (превышение прибыли).
  2. БОЛЕЗНЕННЫЕ ПОТЕРИ
  3. ВИДЫ ПОТЕРЬ НАПОРА
  4. ВЛИЯНИЕ РЕЖИМА ДВИЖЕНИЯ ЖИДКОСТИ НА ПОТЕРИ НАПОРА
  5. Влияние сечения нулевого провода на потери активной мощности и уравновешивание токов нулевой последовательности
  6. Вопрос 45. Трансформатор с линейными характеристиками. Устройство, принцип действия, баланс мощностей. Потери на вихревые токи и способы их уменьшения.
  7. ВПИТЫВАНИЕ И АДСОРБЦИЯ ПРОДУКТАМИ ЖИРА И ЕГО ПОТЕРИ ПРИ ЖАРКЕ
  8. Государственная пенсия по случаю потери кормильца
  9. Диэлектрические потери
  10. Допустимый риск — это риск, потери по которому не превышают расчётной суммы прибыли по осуществляемой операции.

При установившемся движении реальной жидкости основные параметры потока: ве­личина средней скорости в живом сечении (v) и величина перепада давления зависят от физических свойств, движущейся жидкости и от размеров пространства, в котором жидкость движется. В целом, физические свойства жидкости определяются через размер­ные величины, называемые физическими параметрами жидкости.

Можно установить взаимосвязь между всеми параметрами, от которых зависит дви­жение жидкости. Условно эту зависимость можно записать как некоторую функцию в не­явном виде.

где: - линейные величины, характеризующие трёхмерное

пространство,

- линейная величина, характеризующая состояние стенок ка­нала (шероховатость), величина выступов,

- средняя скорость движения жидкости в живом сечении по­тока,

- разность давления между начальным и конечном живыми сечениями потока (перепад давления),

- удельный вес жидкости,

- плотность жидкости,

- динамический коэффициент вязкости жидкости,

- поверхностное натяжение жидкости, К - модуль упругости жидкости.

Для установления зависимости воспользуемся выводами так называемой -теоремы. Суть её заключается в том, что написанную выше зависимость, выраженную в неявном виде, можно представить в виде взаимозависимых безразмерных комплексов. Выберем

три основных параметра с независимыми размерностями , остальные парамет-

ры выразим через размерности основных параметров.

Эта операция выполняется следующим образом: пусть имеется некоторый параметр i, выразим его размерность через размерности основных параметров; это будет означать:

?

т.е. размерности левой и правой частей равенства должны быть одинаковыми. Тогда можно записать:

Полученные в результате такой операции безразмерные параметры будут называться пи-членами. Эти безразмерные комплексы имеют глубокий физический смысл, они пред­ставляют собой критерии подобия различных сил, действующих в тех или иных процес­сах.

Проделаем такую операцию с некоторыми из параметров.

Параметр А.

i

Теперь запишем показательные уравнения по размерностям последовательно в сле­дующем порядке: L (длина), М (масса), и Т (время):

Из этой системы уравнений: Таким образом, безразмерным



комплексом по этому параметру может быть: Параметр у.

>* ' откуда получим:

и найдём: . Таким образом, безразмерным комплексом по

этому параметру может быть: . Эта безразмерная величина называется

числом Фруда, Fr. Параметр /и.

и найдём:

Полученный безразмерный комплекс называется числом Рейнольдса, Re. Выполняя аналогичные операции с остальными параметрами можно найти:

число Эйлера, число Вебера, We.

число Коши, Са. В итоге получим как результат:

Поскольку, в большинстве случаев силами поверхностного натяжения можно пре­небречь, а жидкость считать несжимаемой средой, можно упростить запись предыдущего выражения, решив последнее уравнение относительно Ей:

Считая канал круглой цилиндрической трубой, и принимая , получим:

Множитель был вынесен за скобки ввиду того, что потери напора по длине пропор­циональны длине канала конечных размеров. Далее учитывая, что: , по­лучим:

Обозначим: Эту величину принято называть коэффициен-

том сопротивления трения по длине или коэффициентом Дарси. Окончательно для круглых труб, учитывая, что :

Эта формула носит название формулы Дарси-Вейсбаха и является одной из основ­ных формул гидродинамики.



Коэффициент потерь напора по длине будет равен:

Запишем формулу Дарси-Вейсбаха в виде:

Величину называют гидравлическим уклоном, а величину называ-

ют коэффициентом Шези.

Величина имеет размерность скорости и носит название динамической

скорости жидкости.

Тогда коэффициент трения (коэффициент Дарси):

' ' 6. Режимы движения жидкости


Дата добавления: 2015-02-09; просмотров: 6; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Гидравлические сопротивления | Экспериментальное изучение движения жидкости
lektsii.com - Лекции.Ком - 2014-2019 год. (0.013 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты