Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Мембранное (пристеночное) пищеварение.




Некоторые белки могут довольно прочно прикрепляться к поверхности клетки, соприкасаясь при этом только с олигосахаридами гликокаликса. Например, такой способностью обладают многие пищеварительные ферменты. Если первичная лизосома сольется с наружной мембраной клетки, то многие из находившихся в ней пищеварительных ферментов, оказавшись "на улице", сразу же прилипнут к поверхности гликокаликса. При этом они смогут "ловить" проплывающие мимо соответствующие полимеры и расщеплять их. Белки-переносчики из лизосомы окажутся в наружной мембране, и начнут переносить внутрь клетки соответствующие мономеры. Получается, что пища будет перевариваться прямо на поверхности клетки. Особенно активно пристеночное пищеварение происходит в кишечнике у разных животных.

Как вы уже знаете, клеточная мембрана образована липидным бислоем, в который встроены различные белки.

На самом деле разные участки мембраны могут иметь разную структуру. Поверхность мембраны похожа на поверхность воды со льдинами. Там есть так называемые кластеры, часть их обязана своим появлением тому, что отдельные молекулы (не содержащие двойных связей) слиплись между собой, вокруг них нарастают другие молекулы. Мембрана разделяется на части, некоторые из которых остаются твердыми и как бы плавают в более легкоплавких участках. Какие-то липиды прилипают к белкам, к ним прилипают еще липиды. Сквозь мембрану возможен перенос самых разных веществ.

Часть переносов осуществляется специальными белками. Бывает что это происходит с затратой АТФ, иногда без затраты.

Одна из таких систем называется натрий-калиевый насос или натрий-калиевая АТФаза. Этот белок замечателен тем, что на него тратится колоссальное количество АТФ – примерно треть АТФ, синтезируемой в клетке. Это белок, который переносит через мембрену внутрь ионы калия, а наружу – ионы натрия. В результате получается, что натрий накапливается снаружи клеток. Открытых натриевых каналов в мембране нет, и получается, что снаружи довольно много натрия. Но в большинстве клеток животных имеются калиевые каналы, которые все время открыты. Поэтому перенос натрий-калиевой АТФазой калия особого значения не имеет. Так как снаружи накопился натрий, и там положительный заряд. По калию возникает равновесие и калий идет внутрь клетки. При этом внутри клетки заряд отрицательный, а снаружи – положительный. В результате любой положительный ион может быть перенесен через мембрану сравнительно легко просто за счет того, что есть разность зарядов.

Например, существует натрий-зависимый транспорт глюкозы – специальный белок присоединяет ион натрия и молекулу глюкозы снаружи, а дальше за счет того, что ион натрия притягивается внутрь, белок с легкостью переносит и натрий и глюкозу внутрь, т.е натрий-калиевая АТФаза создает разность заряда, которую можно много для чего использовать.

На этом же принцие основано то, что нервные клетки имеют такое же распределение зарядов, и это позволят пропустить внутрь натрий и очень быстро создать изменение заряда, называемое нервным импульсом. Об этом вам будут рассказывать позже.

Потенциал покоя характерен для большинства клеток.

Наконец, транспорт через мембрану происходит еще и за счет того, что молекулы липидов вращаются вокруг всех одинарных связей, и может возникать ситуация, когда несколько молекул воды проникают между раздвинувшимися друг от друга на долю секунды молекулами липидов, образуется пузырек из нескольких молекул воды, который дрейфует по мембране и с какой-то вероятностью может проникнуть внутрь.

Мембрана непроницаема для моно- и полимеров, находящихся внутри клетки. То есть внутри клетки много молекул, которые не могут пройти через мембрану. Если клетку поместить в дистиллированную воду, то вода начнет поступать внутрь. Это явление называется осмос. Клеточная стенка о которой подробно написано в учебнике, защищает от осмоса. Если каплю человеческой крови капнуть в чистую воду, эритроциты раздуются. Диффузия воды будет направлена внутрь, клетка будет раздуваться и в конце концов лопнет. Таким способом раньше изучали строение мембран – когда эритроцит лопается, получается почти чистая мембрана. Единственный способ защитить клетку – понизить концентрацию воды в омывающей клетку жидкости. Для того кровь содержит хлорид натрия, и клетки животных могут жить только в солевом растворе (он же – визиологический раствор). Клетки животных, обитающих в пресной воде должны избавляться от излишка воды. У простейших для этого существует сократительная вакуоль. У некоторых животных, живущих в воде, например, у гидры, в каждой клетке имеется сократительная вакуоль.

Теперь обсудим цитоскелет. Цитоскелет состоит из нескольких компонентов. Там есть микротрубочки, я их упоминал, когда обсуждал фагоцитоз.

Микротрубочки полностью соответствуют своему названию. Это прямые микроскопические трубочки (наружный диаметр 28 нм, внутренний - 14 нм), состоящие из двух похожих друг на друга белков a-тубулина ("альфа-тубулин") и b-тубулина ("бета-тубулин"). Два конца микротрубочки отличаются друг от друга некоторыми важными свойствами (их называют "+" и "-"-концы). В ДНК клетки имеются два разных гена, содержащие информацию о последовательностях аминокислот a-тубулина и b-тубулина. После синтеза на рибосомах в цитоплазме молекулы а- и b-тубулина объединяются в димеры ("ди" - "два", "мерос" - "часть"). Димеры тубулина при определенных условиях могут присоединяться к "+"-концу микротрубочки, микротрубочка при этом удлиняется. С "-"-конца микротрубочки могут разбираться (то есть от него отделяются димеры тубулина, и микротрубочка при этом укорачивается). Изменяя условия в разных частях цитоплазмы, клетка имеет возможность делать сеть микротрубочек в ней более или, наоборот, менее густой. Кроме того, есть белки, способные присоединяться к "+"-концам микротрубочек, прекращая тем самым их сборку, и другие белки, способные присоединяться к "-"-концам и прекращать разборку микротрубочек (вместе они называются “кэпирующие белки”).

Известны специальные транспортные белки, способные перетаскивать по микротрубочкам различные органоиды клетки. Один из них, кинезин, переносит их в направлении от "-"- к "+"-концу.

Следующий момент связан с тем, что если какие-то белки портятся, то такая конструкция гарантирует от того, что испортится вся микротрубочка. Если где-то возник разрыв белковой цепочки, то этот белок не присоединиться к плюс-концу или каким-то образом будет удален, или вся микротрубочка разберется. То есть так решается задача как избавляться от испорченных молекул. Естественно, все макромолекулы в клетке постепенно портятся. И часть конструкций клетки ориентирована на удаление испорченных молекул. Например, в цитоплазме клетки есть ферменты – гидролазы, которые расщепляют белки. У всех белков, находящихся в цитоплазме, концы цепочки аминокислот спрятаны внутрь белковой глобулы. В норме они не торчат наружу. Если появился кончик, значит возник разрыв. И такой белок будет уничтожен, расщеплен на отдельные аминокислоты, которые потом можно опять использовать. И это правильно, так как белок испорчен. Похожая ситуация с нуклеиновыми кислотами – они как правило защищены от разрушения.

Из микротрубочек состоят центриоли. Центриоль – это цилиндр, состоящий из девяти троек микротрубочек. На поверхности цилиндра находятся белковые конструкции, которые служат центрами организации микротрубочек. Они обладают способностью создавать короткие участки микротрубочек из димеров тубулина. И каждому короткому участку дальше могут присоединяться димеры тубулина, и от центриоли в разные стороны расходятся микротрубочки. Это существенно при митозе. Так что центриоль служит центром организации микротрубочек.

Центриоль является также основанием ундулиподии, они же жгутики или реснички. Это характерный органоид, которые, видимо, также как митохондрии и хлоропласты, имеет симбиогенное происхождение. Были некоторые симбиотические бактерии, которые постепенно превратились в ундулиподии.

Есть два варианта того как работают реснички. Есть два варианта работв ундулиподии. Один вариант, который называется ресничка, делает взмах, поверхность, к которой она прикреплена, получает толчок. Начальный участок реснички при этом становится мягкой и начинает сгибаться. Ресничка работает (делает эффективный удар) в одной плоскости.

У протистов (у инфузорий) ресничка иногда может совершать так называемый реверс, то есть бить в обратную сторону. В любом случае движение означает, что для того, чтобы животное двигалось в определенную сторону, все реснички должны быть ориентированы своими плоскостями в одну и ту же сторону. Действительно, так и есть. На теле планарии, например, они ориентированы в одну сторону.

Другой вариант – это жгутик. В этом случае кончик ундулиподии двигается по кругу. При этом в зависимости от того, как изогнута сама нить жгутика, жгутик может быть тянущим или толкающим. На рис. Показан вариант толкающего и тянущего жгутика.

Сама по себе нить закручена в спираль, витки которой перемещаются – обычно от основания к кончику жгутика. В результате в зависимости от того, как соотносится направление вращения и направление закрученности спирали, жгутик или «ввинчивается» в воду или как бы «вывинчивается».

У некоторых простейших бывает промежуточный вариант, когда ундулиподия работает как жгутик, но описывает при этом фигуру не круг, а сильно вытянутый овал.

Как устроена эта конструкция внутри. На срезе реснички видны девять пар микротрубочек. При этом в центре имеются еще две микротрубочки, соединенные некими связками и окруженные цилиндром из белка нексина. Это называется центральный цилиндр, от каждой пары микротрубочек центрального цилиндра отходит спица, которая тоже состоит из белка нексина.

Кроме того, каждая пара имеет «ручки» - выросты, состоящие из белка динеина, который обладает способностью, потребляя АТФ, присоединяться к соседней микротрубочке и создавать разность высот между парами микротрубочек. В результате, когда из 9 пар микротрубочек срабатывают динеиновые «ручки» примерно на половине, то какие-то пары микротрубочек поднимаются выше, а какие-то – опускаются. Жгутик сгибается, происходит взмах. Примерно так работает ундулиподии, которые используется при движении простейших.

Основной белок другой части цитоскелета – микрофиламентов - называется актин. Глобулы актина (называемого в этом состоянии г-актин) способны объединятся в нити, представляющие собой двойные спирали, соединенные между собой. Получается двойная спираль с двумя желобками. Есть большое количество белков, влияющих на архитектуру этой системы нитей. Есть белки, которые соединяют вместе случайно коснувшиеся нити, есть белки, которые слепляют их в пучки, и разные другие другие. Один из белков, регулирующих структуру нитей, называется тропомиозин. Он тоже образуется в виде глобул и формирует нити. Дальше эти нити укладываются в два желобка на нитях f-актина. Есть еще один белок, называется тропонин, который состоит из трех субъединиц. Одна субъединица связывается с f-актином, вторая способна связываться с тропомиозином, а третья обладает способностью обратимо связывать кальций. При наличии ионов кальция в растворе смесь субъединиц соединяется. Если убрать кальций, то кальций отделяется и все возвращается в исходное состояние. Такой филамент, состоящий из этих трех белков, в присутствии кальция будет переходить в другое состояние, при котором тропонин, удлинившись, будет вытаскивать из желобков нити тропомиозина. В результате при наличии кальция желобки будут открываться, а если кальций из среды убрать – закрываться. Зачем это нужно, сейчас объясню.

Еще один белок, принимающий участие в сокращении, называется миозин. Его структура хорошо изучена и представляет собой две переплетенные альфа-спирали с головками на концах. При этом имеется так называемая шарнирная область, в которой возможны изгибания. Даже одна такая молекула способна, связываясь головками с желобками актинового филамента, способна в присутствии кальция по нему взбираться, попеременно сгибаясь и разгибаясь (с расходом АТФ).

Молекулы миозина способны объединятся в димеры. Такой димер способен прикрепиться к двум нитям актина и двигать их навстречу друг другу в присутствии кальция. Более того, молекулы миозина способны слипаться друг с другом в агрегаты большего размера, так что получаются конструкции из сотен и даже тысяч молекул. Они представляют собой цилиндр с шестью рядами головок. Внутри – молекулы миозина, а торчат ряды головок. В середине такой молекулы есть пространство в котором, с одной стороны молекула ориентирована в одну сторону, а с другой – в другую, ширина конструкции примерно равна удвоенной длине молекулы миозина. В агрегате шесть филаментов с одной и шесть с другой стороны, и как только в среде появится кальций, они могут быть потащены навстречу друг другу.

Из таких агрегатов может быть составлена более сложная структура. Агрегат миозина с шестью рядами головок и нити актина (актиновые филаменты) – опять агрегат миозина и т.д. То есть получается по сути кристаллическая структура, в которой каждый актиновый филамент связан с тремя миозиновыми, а каждый миозиновый – с шестью актиновыми. Вся структура может сокращаться, и примерно так устроено мышечное волокно, например, поперечно-полосатые мышцы.

К диску из специального белка с двух сторон прикреплены актиновые филаменты. Между актиновыми филаментами находятся агрегаты миозина. Получается структура с поперечными полосками (отсюда и название поперечно-полосатая мышца). Если в нее подать кальций, а для этого нужны участки эндоплазматической сети и белки-каналы в ней, которые в нужный момент откроются. Чтобы они открылись, нужно, чтобы по мембране мышцы побежал потенциал действия, о котором вам потом расскажут. Кальций выйдет, и тогда вся конструкция сократиться. Головки миозина присоединятся к актиновым филаментам и потянут их.

Ядро и ядерная оболочка. Ядерная оболочка двойная, в ней есть ядерные поры, они окружены в три ряда кругом из восьми белками. Один внешний круг контактирует с цитоплазмой, другой средний и внутренний круг контактирует с внутренностью ядра. Ядерная пора выполняет достаточно сложную функцию. Все белки синтезируются в цитоплазме. Соответственно, ядерная пора должна пропустить внутрь ядра только те белки, которые должны там работать, и не пропустить другие. Исследования показали, что существует определенная последовательности аминокислот, которая является пропуском внутрь ядра. Если эти 5-6 аминокислот химически присоединить к шарику латекса, и взвесь таких шариков инъецировать внутрь клетки, то белки пор протащат шарики в ядро. С другой стороны, эти же белки должны не выпускать из ядра молекулы ДНК, РНК и др. Молекулы ДНК особым образом закреплены в ядре, так что каждой молекуле (хромосоме) соответствует определенная хромосомная территория, участок внутри ядра. Иногда при повреждении клетки, например под действием радиации, хромосомы с двух сторон ядра двигаются навстречу друг другу и с помощью специальных белков сравниваются и исправляют повреждение. Это все мало изучено, известно только, что ДНК прикреплена.

Материал лекции изложен на сайте И.Л.Окштейна: http://www.lasch.narod.ru//school/cytol/cyto.htm

Более детально – в учебнике Макеева

 


Поделиться:

Дата добавления: 2015-02-09; просмотров: 302; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты