Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Неспецифические факторы защиты организма




Механические факторы. Кожа и слизистые оболочки ме­ханически препятствуют проникновению микроорганизмов и других антигенов в организм. Последние все же могут попадать в организм при заболеваниях и повреждениях кожи (травмы, ожоги, воспалительные заболевания, укусы насекомых, живот­ных и т. д.), а в некоторых случаях и через нормальную кожу и слизистую оболочку, проникая между клетками или через клет­ки эпителия (например, вирусы). Механическую защиту осуще­ствляет также реснитчатый эпителий верхних дыхательных пу­тей, так как движение ресничек постоянно удаляет слизь вмес­те с попавшими в дыхательные пути инородными частицами и микроорганизмами.

Физико-химические факторы. Антимикробными свой­ствами обладают уксусная, молочная, муравьиная и другие кис­лоты, выделяемые потовыми и сальными железами кожи; соля­ная кислота желудочного сока, а также протеолитические и другие ферменты, имеющиеся в жидкостях и тканях организма. Особая роль в антимикробном действии принадлежит ферменту лизоциму. Этот протеолитический фермент получил название «мурамидаза», так как разрушает клеточную стенку бактерий и других клеток, вызывая их гибель и способствуя фагоцитозу. Лизоцим вырабатывают макрофаги и нейтрофилы. Содержится он в больших количествах во всех секретах, жидко­стях и тканях организма (кровь, слюна, слезы, молоко, кишеч­ная слизь, мозг и т. д.). Снижение уровня фермента приводит к возникновению инфекционных и других воспалительных заболе­ваний. В настоящее время осуществлен химический синтез лизоцима, и он используется как медицинский препарат для лече­ния воспалительных заболеваний.

Иммунобиологические факторы. В процессе эволюции сформировался комплекс гуморальных и клеточных факторов не­специфической резистентности, направленных на устранение чу­жеродных веществ и частиц, попавших в организм.

Гуморальные факторы неспецифической резистентности со­стоят из разнообразных белков, содержащихся в крови и жид­костях организма. К ним относятся белки системы комплемен­та, интерферон, трансферрин, β-лизины, белок пропердин, фибронектин и др.

Белки системы комплемента обычно неактивны, но приоб­ретают активность в результате последовательной активации и взаимодействия компонентов комплемента. Интерферон оказы­вает иммуномодулирующий, пролиферативный эффект и вызы­вает в клетке, инфицированной вирусом, состояние противови­русной резистентности. β -Лизины вырабатываются тромбоцита­ми и обладают бактерицидным действием. Трансферрин конку­рирует с микроорганизмами за необходимые для них метаболи­ты, без которых возбудители не могут размножаться. Белок про-пердин участвует в активации комплемента и других реакциях. Сывороточные ингибиторы крови, например р-ингибиторы (р-липопротеины), инактивируют многие вирусы в результате не­специфической блокады их поверхности.

Отдельные гуморальные факторы (некоторые компоненты ком­племента, фибронектин и др.) вместе с антителами взаимодей­ствуют с поверхностью микроорганизмов, способствуя их фаго­цитозу, играя роль опсонинов.

Большое значение в неспецифической резистентности имеют клетки, способные к фагоцитозу, а также клетки с цитотоксической активностью, называемые естественными киллерами, или NK-клетками. NK-клетки представляют собой особую популяцию лимфоцитоподобных клеток (большие гранулосодержащие лим­фоциты), обладающих цитотоксическим действием против чуже­родных клеток (раковых, клеток простейших и клеток, поражен­ных вирусом). Видимо, NK-клетки осуществляют в организме противоопухолевый надзор.

В поддержании резистентности организма имеет большое зна­чение и нормальная микрофлора организма.

 

№ 53 Комплемент, его структура, функции, пути актива­ции, роль в иммунитете.

 

Природа и характеристика комплемента. Комплемент является одним из важных фак­торов гуморального иммунитета, играющим роль в защите организма от антигенов. Комплемент представляет со­бой сложный комплекс белков сыворотки крови, находящийся обычно в неактивном состоянии и активирующийся при соедине­нии антигена с антителом или при агрега­ции антигена. В состав комплемента входят 20 взаимодействующих между собой белков, девять из которых являются основными ком­понентами комплемента; их обозначают циф­рами: С1, С2, СЗ, С4... С9. Важную роль играют также факторы В, D и Р (пропердин). Белки комплемента относятся к глобулинам и отличаются между собой по ряду физико-химических свойств. В частности, они сущес­твенно различаются по молекулярной массе, а также имеют сложный субъединичный состав: Cl-Clq, Clr, Cls; СЗ-СЗа, СЗЬ; С5-С5а, С5b и т. д. Компоненты комплемента синтези­руются в большом количестве (составляют 5—10% от всех белков крови), часть из них образуют фагоциты.

Функции комплемента многообразны: а) участвует в лизисе микробных и других клеток (цитотоксическое действие); б) обладает хемотаксической активностью; в) принимает учас­тие в анафилаксии; г) участвует в фагоцитозе. Следовательно, комплемент является компонен­том многих иммунологических реакций, направ­ленных на освобождение организма от микробов и других чужеродных клеток и антигенов(на­пример, опухолевых клеток, трансплантата).

Механизм активации комплемента очень сложен и представляет собой каскад фер­ментативных протеолитических реакций, в результате которого образуется активный цитолитический комплекс, разрушающий стен­ку бактерии и других клеток. Известны три пути активации комплемента: классический, альтернативный и лектиновый.

По классическому пути комплемент активирует­ся комплексом антиген-антитело. Для этого достаточно участия в связывании антигена одной молекулы IgM или двух молекул IgG. Процесс начинается с присоединения к ком­плексу АГ+АТ компонента С1, который рас­падается на субъединицы Clq, Clr и С Is. Далее в реакции участвуют последовательно активированные «ранние» компоненты комплемента в такой последовательности: С4, С2, СЗ. Эта реакция имеет характер усиливающе­гося каскада, т. е. когда одна молекула пре­дыдущего компонента активирует несколько молекул последующего. «Ранний» компонент комплемента С3 активирует компонент С5, который обладает свойством прикрепляться к мембране клетки. На компоненте С5 путем последовательного присоединения «поздних» компонентов С6, С7, С8, С9 образуется литический или мембраноатакующий комплекс который нарушает целостность мембраны (образует в ней отверстие), и клетка погибает в результате осмотического лизиса.

Альтернативный путь активации комплемен­та проходит без участия антител. Этот путь характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция при аль­тернативном пути начинается с взаимодействия антигена (например, полисахарида) с протеи­нами В, D и пропердином (Р) с последующей активацией компонента СЗ. Далее реакция идет так же, как и при классическом пути — образу­ется мембраноатакующий комплекс.

Лектиновыи путь активации комплемента также происходит без участия антител. Он ини­циируется особым маннозосвязывающим белком сыворотки крови, который после взаимодейс­твия с остатками маннозы на поверхности мик­робных клеток катализирует С4. Дальнейший каскад реакций сходен с классическим путем.

В процессе активации комплемента обра­зуются продукты протеолиза его компонен­тов — субъединицы СЗа и СЗb, С5а и С5b и дру­гие, которые обладают высокой биологической активностью. Например, СЗа и С5а принимают участие в анафилактических реакциях, являют­ся хемоаттрактантами, СЗb — играет роль в опсонизации объектов фагоцитоза, и т. д. Сложная каскадная реакция комплемента происходит с участием ионов Са2+ и Mg2+.

 

№ 54 Интерфероны, природа. Способы получения и применения.

Интерферон относится к важным защитным белкам иммунной системы. Открыт при изучении интерференции вирусов, т. е. явления, когда животные или культуры клеток, инфициро­ванные одним вирусом, становились нечувс­твительными к заражению другим вирусом. Оказалось, что интерференция обусловлена образующимся при этом белком, обладаю­щим защитным противовирусным свойством. Этот белок назвали интерфероном.

Интерферон представляет собой семейство белков-гликопротеидов, которые синтезируются клетками иммунной системы и соединитель­ной ткани. В зависимости от того, какими клетками синтезируется интерферон, выделя­ют три типа: α, β и γ-интерфероны.

Альфа-интерферон вырабатывается лейко­цитами и он получил название лейкоцитар­ного; бета-интерферон называют фибробластным, поскольку он синтезируется фибробластами — клетками соединительной ткани, а гамма-интерферон — иммунным, так как он вырабатывается активированными Т-лимфоцитами, макрофагами, естественными киллерами, т. е. иммунными клетками.

Интерферон синтезируется в организме постоянно, и его концентрация в крови де­ржится на уровне примерно 2 МЕ/мл (1 меж­дународная единица — ME — это количество интерферона, защищающее культуру клеток от 1 ЦПД50 вируса). Выработка интерферона резко возрастает при инфицировании виру­сами, а также при воздействии индукторов интерферона, например РНК, ДНК, сложных полимеров. Такие индукторы интерферона получили название интерфероногенов.

Помимо противовирусного действия интер­ферон обладает противоопухолевой защитой, так как задерживает пролиферацию (размноже­ние) опухолевых клеток, а также иммуномодулирующей активностью, стимулируя фагоцитоз, естественные киллеры, регулируя антителообразование В-клетками, активируя экспрессию главного комплекса гистосовместимости.

Механизм действия интерферона сложен. Интерферон непосредственно на вирус вне клетки не действует, а связывается со спе­циальными рецепторами клеток и оказыва­ет влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков.

Применение интерферона. Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или пос­тупать в организм извне. Поэтому его использу­ют с профилактической целью при многих ви­русных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепати­ты (В, С, D), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и забо­леваний, связанных с иммунодефицитами.

Интерфероны обладают видоспецифичностью, т. е. интерферон человека менее эффек­тивен для животных и наоборот. Однако эта видоспецифичность относительна.

Получение интерферона. Получают интерферон двумя способами: а) путем инфи­цирования лейкоцитов или лимфоцитов кро­ви человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конс­труируют из него препараты интерферона; б) генно-инженерным способом — путем выра­щивания в производственных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон. Обычно используют рекомбинантные штаммы псевдомонад, кишечной палочки со встроенными в их ДНК генами интерферона. Интерферон, получен­ный генно-инженерным способом, носит на­звание рекомбинантного. В нашей стране рекомбинантный интерферон получил офици­альное название «Реаферон». Производство этого препарата во многом эффективнее и дешевле, чем лейкоцитарного.

Рекомбинантный интерферон нашел ши­рокое применение в медицине как профилак­тическое и лечебное средство при вирусных инфекциях, новообразованиях и при иммунодефицитах.

 

№ 55 Видовой (наследственный) иммунитет.

Врожденный, иди видовой, иммунитет, он же наследственный, генетический, консти­туциональный — это выработанная в про­цессе филогенеза генетически закреплен­ная, передающаяся по наследству невоспри­имчивость данного вида и его индивидов к какому-либо антигену (или микроорганиз­му), обусловленная биологическими осо­бенностями самого организма, свойствами данного антигена, а также особенностями их взаимодействия.

Примером может служить невосприимчи­вость человека к некоторым возбудителям, в том числе к особо опасным для сельскохо­зяйственных животных (чума крупного рога­того скота, болезнь Ньюкасла, поражающая птиц, оспа лошадей и др.), нечувствитель­ность человека к бактериофагам, поражаю­щим клетки бактерий. К генетическому им­мунитету можно также отнести отсутствие взаимных иммунных реакций на тканевые антигены у однояйцовых близнецов; различают чувствительность к одним и тем же антигенам у различных линий животных, т. е. животных с различным генотипом.

Объяснить видовой иммунитет можно с разных позиций, прежде всего отсутствием у того или иного вида рецепторного аппарата, обеспечивающего пер­вый этап взаимодействия данного антигена с клетками или молекулами-мишенями, опре­деляющими запуск патологического процесса или активацию иммунной системы. Не исклю­чены также возможность быстрой деструкции антигена, например, ферментами организма или же отсутствие условий для приживления и размножения микроба (бактерий, вирусов) в организме. В конечном итоге это обусловле­но генетическими особенностями вида, в час­тности отсутствием генов иммунного ответа к данному антигену.

Видовой иммунитет может быть абсолют­ным и относительным. Например, нечувс­твительные к столбнячному токсину лягушки могут реагировать на его введение, если по­высить температуру их тела. Белые мыши, не чувствительные к какому-либо антигену, при­обретают способность реагировать на него, если воздействовать на них иммунодепрессантами или удалить у них центральный орган иммунитета — тимус.

 

№ 56 Понятие об иммунитете. Виды иммунитета.

Иммунитет – это способ защиты организма от генетически чужеродных веществ – антигенов экзогенного и эндогенного происхождения, направленный на поддержание и сохранение гомеостаза, структурной и функциональной целостности организма, биологической (антигенной)индивидуальности каждого организма и вида в целом.

Различают несколько основных видов иммунитета.

Врожденный, иди видовой, иммунитет, он же наследственный, генетический, консти­туциональный — это выработанная в про­цессе филогенеза генетически закреплен­ная, передающаяся по наследству невоспри­имчивость данного вида и его индивидов к какому-либо антигену (или микроорганиз­му), обусловленная биологическими осо­бенностями самого организма, свойствами данного антигена, а также особенностями их взаимодействия.

Примером может служить невосприимчи­вость человека к некоторым возбудителям, в том числе к особо опасным для сельскохо­зяйственных животных (чума крупного рога­того скота, болезнь Ньюкасла, поражающая птиц, оспа лошадей и др.), нечувствитель­ность человека к бактериофагам, поражаю­щим клетки бактерий. К генетическому им­мунитету можно также отнести отсутствие взаимных иммунных реакций на тканевые антигены у однояйцовых близнецов; различают чувствительность к одним и тем же антигенам у различных линий животных, т. е. животных с различным генотипом.

Видовой иммунитет может быть абсолют­ным и относительным. Например, нечувс­твительные к столбнячному токсину лягушки могут реагировать на его введение, если по­высить температуру их тела. Белые мыши, не чувствительные к какому-либо антигену, при­обретают способность реагировать на него, если воздействовать на них иммунодепрессантами или удалить у них центральный орган иммунитета — тимус.

Приобретенный иммунитет— это невос­приимчивость к антигену чувствительного к нему организма человека, животных и пр., приобретаемая в процессе онтогенеза в результате естественной встречи с этим антигеном организма, например, при вак­цинации.

Примером естественного приобретенного иммунитета у человека может служить не­восприимчивость к инфекции, возникающая после перенесенного заболевания, так назы­ваемый постинфекционный иммунитет (на­пример, после брюшного тифа, дифтерии и других инфекций), а также «проиммуниция», т. е. приобретение невосприимчивости к ряду микроорганизмов, обитающих в окружающей среде и в организме человека и постепен­но воздействующих на иммунную систему своими антигенами.

В отличие от приобретенного иммунитета в результате перенесенного инфекционного за­болевания или «скрытной» иммунизации, на практике широко используют преднамерен­ную иммунизацию антигенами для создания к ним невосприимчивости организма. С этой целью применяют вакцинацию, а также вве­дение специфических иммуноглобулинов, сывороточных препаратов или иммунокомпетентных клеток. Приобретаемый при этом иммунитет называют поствакци­нальным, и служит он для защиты от возбу­дителей инфекционных болезней, а также других чужеродных антигенов.

Приобретенный иммунитет может быть ак­тивным и пассивным. Активный иммунитет обусловлен активной реакцией, активным вовлечением в процесс иммунной системы при встрече с данным антигеном (например, поствакцинальный, постинфекционный им­мунитет), а пассивный иммунитет формируется за счет введения в организм уже готовых иммунореагентов, способных обеспечить защиту от антигена. К таким иммунореагентам отно­сятся антитела, т. е. специфические иммуног­лобулины и иммунные сыворотки, а также иммунные лимфоциты. Иммуноглобулины широко используют для пассивной иммуни­зации, а также для специфического лечения при многих инфекциях (дифтерия, ботулизм, бешенство, корь и др.). Пассивный иммуни­тет у новорожденных детей создается имму­ноглобулинами при плацентарной внутриут­робной передаче антител от матери ребенку ииграет существенную роль в защите от многих детских инфекций в первые месяцы жизни ребенка.

Поскольку в формировании иммунитета принимают участие клетки иммунной сис­темы и гуморальные факторы, принято ак­тивный иммунитет дифференцировать в за­висимости от того, какой из компонентов иммунных реакций играет ведущую роль в формировании защиты от антигена. В связи с этим различают клеточный, гуморальный, клеточно-гуморальный и гуморально-клеточ-ный иммунитет.

Примером клеточного иммунитета может служить противоопухолевый, а также транс­плантационный иммунитет, когда ведущую роль в иммунитете играют цитотоксические Т-лимфоциты-киллеры; иммунитет при ток-синемических инфекциях (столбняк, боту­лизм, дифтерия) обусловлен в основном ан­тителами (антитоксинами); при туберкулезе ведущую роль играют иммунокомпетентные клетки (лимфоциты, фагоциты) с участием специфических антител; при некоторых ви­русных инфекциях (натуральная оспа, корь и др.) роль в защите играют специфические антитела, а также клетки иммунной системы.

В инфекционной и неинфекционной пато­логии и иммунологии для уточнения харак­тера иммунитета в зависимости от природы и свойств антигена пользуются также такой терминологией: антитоксический, противо­вирусный, противогрибковый, противобактериальный, противопротозойный, трансплан­тационный, противоопухолевый и другие ви­ды иммунитета.

Наконец, иммунное состояние, т. е. актив­ный иммунитет, может поддерживаться, со­храняться либо в отсутствие, либо только в присутствии антигена в организме. В первом случае антиген играет роль пускового фак­тора, а иммунитет называют стерильным. Во втором случае иммунитет трактуют как не­стерильный. Примером стерильного иммуни­тета является поствакцинальный иммунитет при введении убитых вакцин, а нестерильно­го— иммунитет при туберкулезе, который со­храняется только в присутствии в организме микобактерий туберкулеза.

Иммунитет (резистентность к антигену) может быть системным, т. е. генерализован­ным, и местным, при котором наблюдается более выраженная резистентность отдельных органов и тканей, например слизистых верх­них дыхательных путей (поэтому иногда его называют мукозальным).

 

№ 57 Структура и функции иммунной системы. Кооперация иммунокомпетентных клеток.

Структура иммунной системы. Иммунная система представлена лимфоидной тканью. Это спе­циализированная, анатомически обособленная ткань, разбросан­ная по всему организму в виде различных лимфоидных образо­ваний. К лимфоидной ткани относятся вилочковая, или зобная, железа, костный мозг, селезенка, лимфатические узлы (группо­вые лимфатические фолликулы, или пейеровы бляшки, минда­лины, подмышечные, паховые и другие лимфатические образо­вания, разбросанные по всему организму), а также циркулиру­ющие в крови лимфоциты. Лимфоидная ткань состоит из ретикулярных клеток, составляющих остов ткани, и лимфо­цитов, находящихся между этими клетками. Основными функ­циональными клетками иммунной системы являются лимфоци­ты, подразделяющиеся на Т- и В-лимфоциты и их субпопуля­ции. Общее число лимфоцитов в человеческом организме дос­тигает 1012, а общая масса лимфоидной ткани составляет при­мерно 1—2 % от массы тела.

Лимфоидные органы делят на центральные (первичные) и периферические (вторичные).

Функции иммунной системы.Иммунная система выполняет функцию специфической зашиты от анти­генов, представ­ляющую собой лимфоидную ткань, способную комплексом клеточных и гуморальных реак­ций, осуществляемых с помощью набора иммунореагентов, нейтрализовать, обезвредить, удалить, разрушить генетически чужеродный антиген, попавший в организм извне или об­разовавшийся в самом организме.

Специфическая функция иммунной системы в обезвреживании антигенов дополняется ком­плексом механизмов и реакций неспецифичес­кого характера, направленных на обеспечение резистентности организма к воздействию любых чужеродных веществ, в том числе и антигенов.

Кооперация иммунокомпетентных клеток. Иммунная реакция организма может иметь различный характер, но всегда начинается с захвата антигена макрофагами крови и тканей или же со связывания со стромой лимфоидных органов. Нередко антиген адсорбируется также на клетках паренхиматозных органов. В макрофагах он может полностью разрушаться, но чаше подвергается лишь частичной деградации. В частности, большинство антигенов в лизосомах фагоцитов в печение часа подвергается ограниченной денатурации и протеолизу. Оставшиеся от них пептиды (как правило, два-три остатка аминокислот) комплексируются с экспрессированными на внешней мембране макрофагов молекулами МНС.

Макрофаги и все другие вспомогательные клетки, несущие на внешней мембране антигены, называются антигенпрезентирующими, именно благодаря им Т- и В-лимфоциты, выполняя функцию презентации, позволяют быстро распознавать антиген.

Иммунный ответ в виде антителообразования происходит при распознавании В-клетками антигена, который индуцирует их пролиферацию и дифференциацию в плазмоцит. Прямое воздействие на В-клетку без участия Т-клеток могут оказать только тимуснезависимые антигены. В этом случае В-клетки кооперируются с Т-хелперами и макрофагами. Кооперация на тимусза-висимый антиген начинается с его презентации на макрофаге Т-хелперу. В механизме этого распознавания ключевую роль имеют молекулы МНС, так как рецепторы Т-хелперов распознают номинальный антиген как комплекс в целом или же как модифицированные номинальным антигеном молекулы МНС, приобретшие чужеродность. Распознав антиген, Т-хелперы секретируют γ-интерферон, который активирует макрофаги и способствует уничтожению захваченных ими микроорганизмов. Хелперный эффект на В-клетки проявляется пролиферацией и дифференциацией их в плазмоциты. В распознавании антигена при клеточном характере иммунного ответа, кроме Т-хелперов, участвуют также Т-киллеры, которые обнаруживают антиген на тех антигенпрезентирующих клетках, где он комплексируется с молекулами МНС. Более того, Т-киллеры, обусловливающие цитолиз, способны распознавать не только трансформированный, но и нативный антиген. Приобретая способность вызывать цитолиз, Т-киллеры связываются с комплексом антиген + молекулы МНС класса 1 на клетках-мишенях; привлекают к месту соприкосновения с ними цитоплазма-тические гранулы; повреждают мембраны мишеней после экзоцитоза их содержимого.

В результате продуцируемые Т-киллерами лимфотоксины вызывают гибель всех трансформированных клеток организма, причем особенно чувствительны к нему клетки, зараженные вирусом. При этом наряду с лимфотоксином активированные Т-киллеры синтезируют интерферон, который препятствует проникновению вирусов в окружающие клетки и индуцирует в клетках образование рецепторов лимфотоксина, тем самым повышая их чувствительность к литическому действию Т-киллеров.

Кооперируясь в распознавании и элиминации антигенов, Т-хелперы и Т-киллеры не только активируют друг друга и своих предшественников, но и макрофагов. Те же, в свою очередь, стимулируют активность различных субпопуляций лимфоцитов.

Регуляция клеточного иммунного ответа, как и гуморального, осуществляется Т-супрессорами, которые воздействуют на пролиферацию цитотоксических и антигенпрезентирующих клеток.

Цитокины. Все процессы кооперативных взаимодействий им-мунокомпетентных клеток, независимо от характера иммунного ответа, обусловливаются особыми веществами с медиаторными свойствами, которые секретируются Т-хелперами, Т-киллерами, мононуклеарными фагоцитами и некоторыми другими клетками, участвующими в реализации клеточного иммунитета. Все их многообразие принято называть цитокинами. По структуре цитокины являются протеинами, а по эффекту действия — медиаторами. Вырабатываются они при иммунных реакциях и обладают потенциирующим и аддитивным действием; быстро синтезируясь, цитокины расходуются в короткие сроки. При угасании иммунной реакции синтез цитокинов прекращается.

 

№ 58 Иммунокомпетентные клетки. Т- и В-лимфоциты, макрофаги, их кооперация.

Иммунокомпетентные клетки - клетки, способные специфически распознавать антиген и отвечать на него иммунной реакцией. Такими клетками являются Т- и В-лимфоциты (тимусзависимые и костномозговые лимфоциты), которые под влиянием чужеродных агентов дифференцируются в сенсибилизированный лимфоцит и плазматическую клетку.

Т-лимфоциты –это сложная по составу группа клеток, которая происходит от полипотентной стволовой клетки костного мозга, а созревает и дифференцируется в тимусе из предшественников. Т-лимфоциты разделяются на две субпопуляции: иммунорегуляторы и эффекторы. Задачу регуляции иммунного ответа выполняют Т-хелперы. Эффекторную функцияю осуществляют Т-киллеры и естественные киллеры. В орагнизме Т-лимфоциты обеспечивают клеточные формы иммунного ответа, определяют силу и продолжительность иммунной реакции.

B-лимфоциты –преимущественно эффекторные иммунокомпетентные клетки. Зрелые В-лимфоциты и их потомки – плазматические клетки являются антителопродуцентами. Их основными продуктами являются иммуноглобулины. В-лимфоциты участвуют в формировании гуморального иммунитета, В-клеточной иммунологической памяти и гиперчувствительности немедленного типа.

Макрофаги - клетки соединительной ткани, способные к активному захвату и перевариванию бактерий, остатков клеток и других чужеродных для организма частиц. Основная функция макрофагов сводится к борьбе с теми бактериями, вирусами и простейшими, которые могут существовать внутри клетки-хозяина, при помощи мощных бактерицидных механизмов. Роль макрофагов в иммунитете исключительно важна - они обеспечивают фагоцитоз, переработку и представление антигена T-клеткам.

Кооперация иммунокомпетентных клеток. Иммунная реакция организма может иметь различный характер, но всегда начинается с захвата антигена макрофагами крови и тканей или же со связывания со стромой лимфоидных органов. Нередко антиген адсорбируется также на клетках паренхиматозных органов. В макрофагах он может полностью разрушаться, но чаше подвергается лишь частичной деградации. В частности, большинство антигенов в лизосомах фагоцитов в печение часа подвергается ограниченной денатурации и протеолизу. Оставшиеся от них пептиды (как правило, два-три остатка аминокислот) комплексируются с экспрессированными на внешней мембране макрофагов молекулами МНС.

Макрофаги и все другие вспомогательные клетки, несущие на внешней мембране антигены, называются антигенпрезентирующими, именно благодаря им Т- и В-лимфоциты, выполняя функцию презентации, позволяют быстро распознавать антиген.

Иммунный ответ в виде антителообразования происходит при распознавании В-клетками антигена, который индуцирует их пролиферацию и дифференциацию в плазмоцит. Прямое воздействие на В-клетку без участия Т-клеток могут оказать только тимуснезависимые антигены. В этом случае В-клетки кооперируются с Т-хелперами и макрофагами. Кооперация на тимусза-висимый антиген начинается с его презентации на макрофаге Т-хелперу. В механизме этого распознавания ключевую роль имеют молекулы МНС, так как рецепторы Т-хелперов распознают номинальный антиген как комплекс в целом или же как модифицированные номинальным антигеном молекулы МНС, приобретшие чужеродность. Распознав антиген, Т-хелперы секретируют γ-интерферон, который активирует макрофаги и способствует уничтожению захваченных ими микроорганизмов. Хелперный эффект на В-клетки проявляется пролиферацией и дифференциацией их в плазмоциты. В распознавании антигена при клеточном характере иммунного ответа, кроме Т-хелперов, участвуют также Т-киллеры, которые обнаруживают антиген на тех антигенпрезентирующих клетках, где он комплексируется с молекулами МНС. Более того, Т-киллеры, обусловливающие цитолиз, способны распознавать не только трансформированный, но и нативный антиген. Приобретая способность вызывать цитолиз, Т-киллеры связываются с комплексом антиген + молекулы МНС класса 1 на клетках-мишенях; привлекают к месту соприкосновения с ними цитоплазма-тические гранулы; повреждают мембраны мишеней после экзоцитоза их содержимого.

В результате продуцируемые Т-киллерами лимфотоксины вызывают гибель всех трансформированных клеток организма, причем особенно чувствительны к нему клетки, зараженные вирусом. При этом наряду с лимфотоксином активированные Т-киллеры синтезируют интерферон, который препятствует проникновению вирусов в окружающие клетки и индуцирует в клетках образование рецепторов лимфотоксина, тем самым повышая их чувствительность к литическому действию Т-киллеров.

Кооперируясь в распознавании и элиминации антигенов, Т-хелперы и Т-киллеры не только активируют друг друга и своих предшественников, но и макрофагов. Те же, в свою очередь, стимулируют активность различных субпопуляций лимфоцитов.

Регуляция клеточного иммунного ответа, как и гуморального, осуществляется Т-супрессорами, которые воздействуют на пролиферацию цитотоксических и антигенпрезентирующих клеток.

Цитокины. Все процессы кооперативных взаимодействий им-мунокомпетентных клеток, независимо от характера иммунного ответа, обусловливаются особыми веществами с медиаторными свойствами, которые секретируются Т-хелперами, Т-киллерами, мононуклеарными фагоцитами и некоторыми другими клетками, участвующими в реализации клеточного иммунитета. Все их многообразие принято называть цитокинами. По структуре цитокины являются протеинами, а по эффекту действия — медиаторами. Вырабатываются они при иммунных реакциях и обладают потенциирующим и аддитивным действием; быстро синтезируясь, цитокины расходуются в короткие сроки. При угасании иммунной реакции синтез цитокинов прекращается.

 

№ 59 Иммуноглобулины, структура и функции.

 

Природа иммуноглобулинов.В ответ на введение антигена иммунная систе­ма вырабатывает антитела — белки, способные специфически со­единяться с антигеном, вызвавшим их образование, и таким образом участвовать в иммунологических реакциях. Относятся ан­титела к γ-глобулинам, т. е. наименее подвижной в электричес­ком поле фракции белков сыворотки крови. В организме γ-глобулины вырабатываются особыми клетками — плазмоцитами. γ-глобулины, несущие функции антител, получили название иммуноглобули­нов и обозначаются символом Ig. Следовательно, антитела — это иммуноглобулины, вырабатываемые в ответ на введение анти­гена и способные специфически взаимодействовать с этим же антигеном.

Функции.Первичная функция состоит во взаимодсйствии их активных центров с комплементарными им де­терминантами антигенов. Вторичная функция состоит в их способности:

• связывать антиген с целью его нейтрализации и элиминации из организма, т. е. принимать участие в формировании защи­ты от антигена;

• участвовать в распознавании «чужого» антигена;

• обеспечивать кооперацию иммунокомпетентных клеток (мак­рофагов, Т- и В-лимфоцитов);

• участвовать в различных формах иммунного ответа (фагоци­тоз, киллерная функция, ГНТ, ГЗТ, иммунологическая то­лерантность, иммунологическая память).

Структура антител.Белки иммуноглобулинов по химическому составу относятся к гликопротеидам, так как состоят из проте­ина и Сахаров; построены из 18 аминокислот. Имеют видовые отличия, связанные главным образом с набором аминокислот. Их молекулы имеют цилиндрическую форму, они видны в электронном микроскопе. До 80 % иммуноглобулинов имеют константу седиментации 7S; устойчивы к слабым кисло­там, щелочам, нагреванию до 60 °С. Выделить иммуноглобули­ны из сыворотки крови можно физическими и химическими ме­тодами (электрофорез, изоэлектрическое осаждение спиртом и кислотами, высаливание, аффинная хроматография и др.). Эти методы используют в производстве при приготовлении иммуно­биологических препаратов.

Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD. Иммуноглобулины М, G, А имеют под­классы. Например, IgG имеет четыре подкласса (IgG,, IgG2, IgG3, IgG4). Все классы и подклассы различаются по аминокис­лотной последовательности.

Молекулы иммуноглобулинов всех пяти классов состоят из полипептидных цепей: двух одинаковых тяжелых цепей Н и двух одинаковых легких цепей — L, соединенных между собой дисульфидными мостиками. Соответственно каждому классу иммуноглобулинов, т.е. М, G, A, E, D, разли­чают пять типов тяжелых цепей: μ (мю), γ (гамма), α (альфа), ε (эпсилон) и Δ (дельта), различающихся по антигенности. Легкие цепи всех пяти классов являются общими и бывают двух типов: κ (каппа) и λ (ламбда); L-цепи иммуноглобулинов различных классов могут вступать в соединение (рекомбинироваться) как с гомологичны­ми, так и с гетерологичными Н-цепями. Однако в одной и той же молекуле могут быть только идентичные L-цепи (κ или λ). Как в Н-, так и в L-цепях имеется вариабельная — V область, в которой последовательность амино­кислот непостоянна, и константная — С область с постоянным набором аминокислот. В легких и тяжелых цепях различают NH2- и СООН-концевые группы.

При обработке γ -глобулина меркаптоэтанолом разрушаются дисульфидные связи и молекула иммуноглобулина распадается на отдельные цепи полипептидов. При воздействии протеолитическим ферментом папаином иммуноглобулин расщепляется на три фрагмента: два не кристаллизующихся, содержащих детерминантные группы к антигену и названных Fab-фрагментами I и II и один кристаллизующий Fc-фрагмент. FabI- и FabII-фрагменты сходны по свойствам и аминокислотному составу и отличаются от Fc-фрагмента; Fab-и Fc-фрагменты являются компактными образованиями, соеди­ненными между собой гибкими участками Н-цепи, благодаря чему молекулы иммуноглобулина имеют гибкую структуру.

Как Н-цепи, так и L-цепи имеют отдельные, линейно свя­занные компактные участки, названные доменами; в Н-цепи их по 4, а в L-цепи — по 2.

Активные центры, или детерминанты, которые формиру­ются в V-областях, занимают примерно 2 % поверхности мо­лекулы иммуноглобулина. В каждой молекуле имеются две де­терминанты, относящиеся к гипервариабельным участкам Н-и L-цепей, т. е. каждая молекула иммуноглобулина может свя­зать две молекулы антигена. Поэтому антитела являются двух­валентными.

Типовой структурой молекулы иммуноглобулина является IgG. Остальные классы иммуноглобулинов отличаются от IgG дополнительными элементами организации их молеку­лы.

В ответ на введение любого антигена могут вырабатываться антитела всех пяти классов. Обычно вначале вырабатывается IgM, затем IgG, остальные — несколько позже.

 

№ 60 Классы иммуноглобулинов, их характеристика.

 

Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD.

Иммуноглобулин класса G. Изотип G состав­ляет основную массу Ig сыворотки крови. На его долю приходится 70—80 % всех сывороточ­ных Ig, при этом 50 % содержится в тканевой жидкости. Среднее содержание IgG в сыворот­ке крови здорового взрослого человека 12 г/л. Период полураспада IgG — 21 день.

IgG — мономер, имеет 2 антигенсвязывающих центра (может одновременно свя­зать 2 молекулы антигена, следовательно, его валентность равна 2), молекулярную массу около 160 кДа и константу седиментации 7S. Различают подтипы Gl, G2, G3 и G4. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

Обладает высокой аффинностью. IgGl и IgG3 связывают комплемент, причем G3 ак­тивнее, чем Gl. IgG4, подобно IgE, обладает цитофильностью (тропностью, или сродс­твом, к тучным клеткам и базофилам) и участ­вует в развитии аллергической реакции I типа. В иммунодиагностических реакциях IgG может проявлять себя как не­полное антитело.

Легко проходит через плацентарный барь­ер и обеспечивает гуморальный иммунитет новорожденного в первые 3—4 месяца жизни. Способен также выделяться в секрет слизис­тых, в том числе в молоко путем диффузии.

IgG обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.

Иммуноглобулин класса М.Наиболее круп­ная молекула из всех Ig. Это пентамер, кото­рый имеет 10 антигенсвязывающих центров, т. е. его валентность равна 10. Молекулярная масса его около 900 кДа, константа седи­ментации 19S. Различают подтипы Ml и М2. Тяжелые цепи молекулы IgM в отличие от других изотипов построены из 5 доменов. Период полураспада IgM — 5 дней.

На его долю приходится около 5—10 % всех сывороточных Ig. Среднее содержание IgM в сыворотке крови здорового взрослого человека составляет около 1 г/л. Этот уровень у человека достигается уже к 2—4-летнему возрасту.

IgM филогенетически — наиболее древний иммуноглобулин. Синтезируется предшест­венниками и зрелыми В-лимфоцитами. Образуется в начале первичного иммунного ответа, также первым начинает синтезиро­ваться в организме новорожденного — опре­деляется уже на 20-й неделе внутриутробного развития.

Обладает высокой авидностью, наиболее эффективный активатор комплемента по клас­сическому пути. Участвует в формировании сывороточного и секреторного гуморального иммунитета. Являясь полимерной молекулой, содержащей J-цепь, может образовывать сек­реторную форму и выделяться в секрет сли­зистых, в том числе в молоко. Большая часть нормальных антител и изоагглютининов относится к IgM.

Не проходит через плаценту. Обнаружение специфических антител изотипа М в сыво­ротке крови новорожденного указывает на бывшую внутриутробную инфекцию или де­фект плаценты.

IgM обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.

Иммуноглобулин класса А.Существует в сы­вороточной и секреторной формах. Около 60 % всех IgA содержится в секретах слизистых.

Сывороточный IgA:На его долю прихо­дится около 10—15% всех сывороточных Ig. В сыворотке крови здорового взрослого чело­века содержится около 2,5 г/л IgA, максимум достигается к 10-летнему возрасту. Период полураспада IgA — 6 дней.

IgA — мономер, имеет 2 антигенсвязывающих центра (т. е. 2-валентный), молекуляр­ную массу около 170 кДа и константу седи­ментации 7S. Различают подтипы А1 и А2. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

Обладает высокой аффинностью. Может быть неполным антителом. Не связывает комплемент. Не проходит через плацентар­ный барьер.

IgA обеспечивает нейтрализацию, опсони-зацию и маркирование антигена, осуществля­ет запуск антителозависимой клеточно-опос-редованной цитотоксичности.

Секреторный IgA:В отличие от сывороточ­ного, секреторный sIgA существует в полимерной форме в виде ди- или тримера (4- или 6-валентный) и содержит J- и S-пeптиды. Молекулярная масса 350 кДа и выше, константа седиментации 13S и выше.

Синтезируется зрелыми В-лимфоцитами и их по­томками — плазматическими клетками со­ответствующей специализации только в пре­делах слизистых и выделяется в их секреты. Объем продукции может достигать 5 г в сутки. Пул slgA считается самым многочисленным в организме — его количество превышает суммарное содержание IgM и IgG. В сыворотке крови не обнаруживается.

Секреторная форма IgA — основной фак­тор специфического гуморального местного иммунитета слизистых оболочек желудочно-кишечного тракта, мочеполовой системы и респираторного тракта. Благодаря S-цепи он устойчив к действию протеаз. slgA не активи­рует комплемент, но эффективно связывается с антигенами и нейтрализует их. Он препятс­твует адгезии микробов на эпителиальных клетках и генерализации инфекции в преде­лах слизистых.

Иммуноглобулин класса Е.Называют так­же реагином. Содержание в сыворотке крови крайне невысоко — примерно 0,00025 г/л. Обнаружение требует применения специаль­ных высокочувствительных методов диагнос­тики. Молекулярная масса — около 190 кДа, константа седиментации — примерно 8S, мо­номер. На его долю приходится около 0,002 % всех циркулирующих Ig. Этот уровень дости­гается к 10—15 годам жизни.

Синтезируется зрелыми В-лимфоцитами и плазматическими клетками преиму­щественно в лимфоидной ткани бронхолегочного дерева и ЖКТ.

Не связывает комплемент. Не проходит че­рез плацентарный барьер. Обладает выражен­ной цитофильностью — тропностью к тучным клеткам и базофилам. Участвует в развитии гиперчувствительности немедленного типа — реакция I типа.

Иммуноглобулин класса D.Сведений об Ig данного изотипа не так много. Практически полностью содержится в сыворотке крови в концентрации около 0,03 г/л (около 0,2 % от общего числа циркулирующих Ig). IgD имеет молекулярную массу 160 кДа и константу се­диментации 7S, мономер.

Не связывает комплемент. Не проходит че­рез плацентарный барьер. Является рецепто­ром предшественников В-лимфоцитов.

 

№ 61 Антигены: определение, основные свойства. Антиге­ны бактериальной клетки.

Антиген –это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознаётся его иммунной системой и вызывает иммунные реакции, направленные на его устранение.

Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью.

Антигенность. Под антигенностью понимают потенциаль­ную способность молекулы антигена акти­вировать компоненты иммунной системы и специфически взаимодействовать с фактора­ми иммунитета (антитела, клон эффекторных лимфоцитов). Иными словами, антиген дол­жен выступать специфическим раздражителем по отношению к иммунокомпетентным клет­кам. При этом взаимодействие компоненты иммунной системы происходит не со всей молекулой одновременно, а только с ее не­большим участком, который получил название «антигенная детерминанта», или «эпитоп».

Чужеродность является обязательным усло­вием для реализации антигенности. По этому критерию система приобретенного иммунитета дифференцирует потенциально опасные объ­екты биологического мира, синтезированные с чужеродной генетической матрицы. Понятие «чужеродность» относительное, так как имму-нокомпетентные клетки не способны напря­мую анализировать чужеродный генетический код. Они воспринимают лишь опосредованную информацию, которая, как в зеркале, отражена в молекулярной структуре вещества.

Иммуногенность — потенциальная способ­ность антигена вызывать по отношению к себе в макроорганизме специфическую за­щитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы: 1. Молекулярные особенности антигена; 2. Клиренс антигена в организме; 3. Реактивность макроорганизма.

К первой группе факторов отнесены природа, химический состав, молекулярный вес, струк­тура и некоторые другие характеристики.

Иммуногенность в значительной степени за­висит от природы антигена. Важна также оптическая изомерия аминокислот, составляющих молекулу белка. Большое значение имеет размер и молекулярная масса антигена. На степень иммуногенности также оказыва­ет влияние пространственная структура анти­гена. Оказалась также существенной стерическая стабильность молекулы антигена. Еще одним важным условием иммуно­генности является растворимость антигена.

Вторая группа факторов связана с динамикой поступления антигена в организм и его выведе­ния. Так, хорошо известна зависимость иммуногенности антигена от способа его введения. На иммунный ответ влияет количество пос­тупающего антигена: чем его больше, тем более выражен иммунный ответ.

Третья группа объединяет факторы, опреде­ляющие зависимость иммуногенности от со­стояния макроорганизма. В этой связи на пер­вый план выступают наследственные факторы.

Специфичностьюназывают способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу. Это свойство обуслов­лено особенностями формирования иммунно­го ответа — необходима комплементарность рецепторного аппарата иммунокомпетентных клеток к конкретной антигенной детерминанте. Поэтому специфичность антигена во многом определяется свойствами составляющих его эпитопов. Однако при этом следует учитывать условность границ эпитопов, их структурное разнообразие и гетерогенность клонов антигенреактивных лимфоцитовой специфичности. В результате этого организм на антигенное раз­дражение всегда отвечает поликлональными им­мунным ответом.

Антиге­ны бактериальной клетки.В структуре бактериальной клетки разли­чают жгутиковые, соматические, капсульные и некоторые другие антигены. Жгутиковые, или Н-антигены,локализуют­ся в локомоторном аппарате бактерий — их жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При на­гревании флагеллин денатурирует, и Н-антиген теряет свою специфичность. Фенол не действует на этот антиген.

Соматический, или О-антиген,связан с клеточной стенкой бактерий. Его основу со­ставляют ЛПС. О-антиген проявляет термос­табильные свойства — он не разрушается при длительном кипячении. Однако соматичес­кий антиген подвержен действию альдегидов (например, формалина) и спиртов, которые нарушают его структуру.

Капсулъные, или К-антигены,располагаются на поверхности клеточной стенки. Встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из по­липептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В, и L. Наибольшая термостабильность ха­рактерна для типа А, он не денатурирует даже при длительном кипячении. Тип В выдержи­вает непродолжительное нагревание (около 1 часа) до 60 "С. Тип L быстро разрушается при этой температуре. Поэтому частичное удале­ние К-антигена возможно путем длительного кипячения бактериальной культуры.

На поверхности возбудителя брюшного ти­фа и других энтеробактерий, которые облада­ют высокой вирулентностью, можно обнару­жить особый вариант капсульного антигена. Он получил название антигена вирулентнос­ти, или Vi-антигена.Обнаружение этого ан­тигена или специфичных к нему антител име­ет большое диагностическое значение.

Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие белки, которые секретируются бактериями в окружающую среду (на­пример, туберкулин). При взаимодействии со специфическими антителами токсины, фер­менты и другие биологически активные моле­кулы бактериального происхождения теряют свою активность. Столбнячный, дифтерий­ный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэ­тому их используют для получения анатокси­нов для вакцинации людей.

В антигенном составе некоторых бактерий выделяется группа антигенов с сильно выра­женной иммуногенностью, чья биологическая активность играет ключевую роль в формиро­вании патогенности возбудителя. Связывание таких антигенов специфическими антителами практически полностью инактивирует виру­лентные свойства микроорганизма и обеспечи­вает иммунитет к нему. Описываемые антиге­ны получили название протективных. Впервые протективный антиген был обнаружен в гнойном отделяемом карбункула, вызванного ба­циллой сибирской язвы. Это вещество являет­ся субъединицей белкового токсина, которая ответственна за активацию других, собственно вирулентных субъединиц — так называемого отечного и летального факторов.

 

№ 62 Антителообразование: первичный и вторичный от­вет.

 

Способность к образованию ан­тител появляется во внутриутробном периоде у 20-недельного эмбриона; после рождения начинается собственная продукция иммуноглобулинов, которая увеличивается до наступления зре­лого возраста и несколько снижается к старости. Динамика об­разования антител имеет различный характер в зависимости от силы антигенного воздействия (дозы антигена), частоты воздействия антигена, состояния организма и его иммунной системы. При первичном и повторном введении антигена динамика антителообразования также различна и протекает в несколько ста­дий. Выделяют латентную, логарифмическую, стацио­нарную фазу и фазу снижения.

В латентной фазе происходят переработка и представление антигена иммунокомпетентным клеткам, размножение клона клеток, специализированного на выработку антител к данному антигену, начинается синтез ан­тител. В этот период антитела в крови не обнаруживаются.

Во время логарифмической фазы синтезированные антитела высво­бождаются из плазмоцитов и поступают в лимфу и кровь.

В ста­ционарной фазе количество антител достигает максимума и ста­билизируется, затем наступает фаза снижения уровня антител. При первичном введении антигена (первичный иммунный от­вет) латентная фаза составляет 3—5 сут, логарифмическая — 7— 15 сут, стационарная — 15—30 сут и фаза снижения — 1—6 мес и более. Особенностью первичного иммунного ответа является то, что первоначально синтезируется IgM, а затем IgG.

В отличие от первичного иммунного ответа при вторичном введении антигена (вторичный иммунный ответ) латентный период укорочен до нескольких часов или 1—2 сут, логарифми­ческая фаза характеризуется быстрым нарастанием и значитель­но более высоким уровнем антител, который в последующих фазах длительно удерживается и медленно, иногда в течение не­скольких лет, снижается. При вторичном иммунном ответе в отличие от первичного синтезируются главным образом IgG.

Такое различие динамики антителообразования при первич­ном и вторичном иммунном ответе объясняется тем, что после первичного введения антигена в иммунной системе формирует­ся клон лимфоцитов, несущих иммунологическую память о данном антигене. После повторной встречи с этим же антиге­ном клон лимфоцитов с иммунологической памятью быстро раз­множается и интенсивно включает процесс антителогенеза.

Очень быстрое и энергичное антителообразование при повтор­ной встрече с антигеном используется в практических целях при необходимости получения высоких титров антител при произ­водстве диагностических и лечебных сывороток от иммунизиро­ванных животных, а также для экстренного создания иммуни­тета при вакцинации.

 

№ 63 Иммунологическая память. Иммунологическая толе­рантность.

Иммунологическая память. При повторной встрече с антигеном орга­низм формирует более активную и быструю иммунную реакцию — вторичный иммунный ответ. Этот феномен получил название имму­нологической памяти.

Иммунологическая память имеет высо­кую специфичность к конкретному анти­гену, распространяется как на гуморальное, так и клеточное звено иммунитета и обус­ловлена В- и Т-лимфоцитами. Она обра­зуется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ней наш организм надежно защищен от повторных антигенных интервенций.

На сегодняшний день рассматривают два наиболее вероятных механизма формирова­ния иммунологической памяти. Один из них предполагает длительное сохранение анти­гена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, под­держивая в напряжении иммунную систему. Вероятно также наличие долгоживущих де­ндритных АПК, способных длительно сохра­нять и презентировать антиген.

Другой механизм предусматривает, что в про­цессе развития в организме продуктивного им­мунного ответа часть антигенореактивных Т- или В-лимфоцитов дифференцируется в малые по­коящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой спе­цифичностью к конкретной антигенной детер­минанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего про­исхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу.

Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и под­держания его длительное время на защитном уровне. Осуществляют это 2—3-кратными при­вивками при первичной вакцинации и перио­дическими повторными введениями вакцинно­го препарата — ревакцинациями.

Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быст­рую и бурную реакцию — криз отторжения.

Иммунологическая толе­рантность— явле­ние, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.

В отличие от иммуносупрессии имму­нологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену.

Иммунологическую толерантность вызы­вают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогенностью обладают полисахариды.

Иммунологическая толерантность быва­ет врожденной и приобретенной. Примером врожденной толерантности является отсутс­твие реакции иммунной системы на свои собственные антигены. Приобретенную толе­рантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммунодепрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассив­ной. Активная толерантность создается пу­тем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать ве­ществами, тормозящими биосинтетическую или пролиферативную активность иммунокомпетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).

Иммунологическая толерантность отличает­ся специфичностью — она направлена к строго определенным антигенам. По степени рас­пространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в со­став конкретного антигена. Для расщепленной, или моновалентной, толерантности характер­на избирательная невосприимчивость каких-то отдельных антигенных детерминант.

Степень проявления иммунологической толе­рантности существенно зависит от ряда свойств макроорганизма и толерогена.

Важное значение в индукции иммуноло­гической толерантности имеют доза анти­гена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств вы­сококонцентрированного антигена. Низкодозовая толерантность, наоборот, вызывается очень малым количеством вы-сокогомогенного молекулярного антигена.

Механизмы толерантности многообразны и до конца не расшифрованы. Известно, что ее основу составляют нормальные процессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития имму­нологической толерантности:

1. Элиминация из организма антигенспецифических клонов лимфоцитов.

2. Блокада биологической активности им-мунокомпетентных клеток.

3. Быстрая нейтрализация антигена анти­телами.

Феномен иммунологической толерантнос­ти имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких как пересадка ор­ганов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патоло­гических состояний, связанных с агрессив­ным поведением иммунной системы.

 

№ 64 Классификация гиперчувствительности по Джейлу и Кумбсу.

 

Изучение молекулярных механизмов аллер­гии привело к созданию Джеллом и Кумбсом в 1968 г. новой классификации. В соответствии с ней различают четыре основных типа аллер­гии: анафилактический (I тип), цитотоксический (II тип), иммунокомплексный (III тип) и опосредованный клетками (IV тип). Первые три типа относятся к ГНТ, четвертый — к ГЗТ. Ведущая роль в запуске ГНТ играют антитела (IgE, G и М), а ГЗТ — лимфоидно-макрофагальная реакция.

Аллергическая реакция I типа связана с биологическими эффектами IgE и G4, на­званных реагинами, которые обладают цитофильностью — сродством к тучным клеткам и базофилам. Эти клетки несут на поверхности высокоаффинный FcR, связывающий IgE и G4 и использующий их как ко-рецепторный фактор специфического взаимодействия с эпитопом аллергена. Связывание аллергена с рецепторным комплексом вызывает дегрануляцию базофила и тучной клетки — залповый выброс биологически активных соединений (гистамин, гепарин и др.), содержащихся в гранулах, в межклеточное пространство. В результате развиваются бронхоспазм, вазодилатация, отек и прочие симптомы, характерные для анафилаксии. Вырабатываемые цитокины стимулируют клеточное звено иммунитета: образование Т2-хелпера и эозинофилогенез.

Цитотоксические антитела (IgG, IgM), на­правленные против поверхностных структур (антигенов) соматических клеток макроорга­низма, связываются с клеточными мембра­нами клеток-мишеней и запускают различ­ные механизмы антителозависимой цитотоксичности (аллергическая реакция II типа). Массивный цитолиз сопровождается соот­ветствующими клиническими проявлениями. Классическим примером является гемолити­ческая болезнь в результате резус-конфликта или переливания иногруппной крови.

Цитотоксическим действием обладают так­же комплексы атиген—антитело, образующи­еся в организме пациента в большом количес­тве после введения массивной дозы антигена (аллергическая реакция III типа). В связи с кумулятивным эффектом клини­ческая симптоматика аллергической реакции III типа имеет отсроченную манифестацию, иногда на срок более 7 суток. Тем не менее этот тип реакции относят к ГНТ. Реакция может проявляться как одно из осложнений от при­менения иммунных гетерологичных сыворо­ток с лечебно-профилактической целью («сы­вороточная болезнь»), а также при вдыхании белковой пыли («легкое фермера»).

Лабораторная диагностика аллергии при аллергических реакциях I типа основана на выявлении суммарных и специфических реа­гинов (IgE, IgG4) в сыворотке крови пациен­та. При аллергических реакциях II типа в сы­воротке крови определяют цитотоксические антитела (антиэритроцитарные, антилейко­цитарные, антитромбоцитарные и др.). При аллергических реакциях III типа в сыворотке крови выявляют иммунные комплексы. Для обнаружения аллергических реакций IV ти­па применяют кожно-аллергические пробы, которые широко используют в диагностике некоторых инфекционных и паразитарных заболеваний и микозов (туберкулез, лепра, бруцеллез, туляремия и др.).

Тип реакции Фактор патогенеза Механизм патогенеза Клинический пример
I. анафилактический (ГНТ) IgE, IgG4 Образование рецепторного комплекса IgE (G4)-АсК тучных клеток и базофилов → Взамодействие эпитопа аллергена с рецепторным комплексом → Активация тучных клеток и базофилов → Высвобождение медиаторов воспаления и других биологически активных веществ Анафилаксия, анафилактический шок, поллинозы
II. цитотоксический (ГНТ) IgM IgG Выработка цитотоксических антител → Активация антителозависимого цитолиза   Лекарственная волчанка, аустоиммунная гемолитическая болезнь, аутоиммунная тромбоцитопения
III. иммунокомплексный (ГНТ) IgM IgG Образование избытка иммунных комплексов → Отложение иммунных комплексов на базальных мембранах, эндотелии и в соединительнотканной строме → Активация антителозависимой клеточно-опосредованной цитотоксичности → Запуск иммунного воспаления Сывороточная болезнь, системные заболевания соединительной ткани, феномен Артюса, «лёгкое фермера»
IV. клеточно-опосредованный (ГЗТ) Т-лимфоциты Сенсибилизация Т-лимфоцитов → Активация макрофага → Запуск иммунного воспаления Кожно-аллергическая проба, контактная аллергия, белковая аллергия замедленного типа

 

№ 65 Механизмы гиперчувствительности замедленного типа. Клинико-диагностическое значение.

 

К аллергическим реак­циям относят два типа реагирования на чужеродное вещество: гиперчувствительность немедленного типа (ГНТ) и гиперчувствительность замедленного типа (ГЗТ). К ГНТ относятся аллергические реакции, проявляющиеся уже че­рез 20—30 мин после повторной встречи с антигеном, а к ГЗТ — реакции, возникающие не ранее чем через 24—48 ч. Механизм и кли­нические проявления ГНТ и ГЗТ различны. ГНТ связана с вы­работкой антител, а ГЗТ — с клеточными реакциями.

ГЗТ впервые описана Р. Кохом (1890). Эта форма проявления не связана с антителами, опосредована клеточными механизма­ми с участием Т-лимфоцитов. К ГЗТ относятся следующие фор­мы проявления: туберкулиновая реакция, замедленная аллергия к белкам, контактная аллергия.

В отличие от реакций I, II и III типов реакции IV типа не свя­заны с антителами, а обусловлены клеточными реакциями, прежде всего Т-лимфоцитами. Реакции замедленного типа могут возникать при сенсибилизации организма:

1. Микроорганизмами и микробными антигенами (бактериальны­ми, грибковыми, протозойны


Поделиться:

Дата добавления: 2015-02-10; просмотров: 148; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты