КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Радиационный баланс земной поверхности
Разность между поглощенной радиацией и эффективным излучением
R = (I sinh + i)(1 – A) - Ee называют радиационным балансом земной поверхности. Другое ее название — остаточная радиация. Радиационный баланс переходит от ночных, отрицательных значений к дневным, положительным после восхода солнца при высоте его 10—15°. От положительных значений к отрицательным он переходит перед заходом солнца при той же его высоте над горизонтом. При наличии снежного покрова радиационный баланс переходит к положительным значениям только при высоте солнца около 20—25°, так как при большом альбедо снега поглощение им суммарной радиации мало. Днем радиационный баланс растет с увеличением высоты солнца и убывает с ее уменьшением. В ночные часы, когда суммарная радиация отсутствует, отрицательный радиационный баланс равен эффективному излучению и потому меняется в течение ночи мало, если только условия облачности остаются одинаковыми.
Распределение радиации «на границе атмосферы»
Для климатологии представляет существенный интерес вопрос о распределении притока и отдачи радиации по Земному шару. Рассмотрим сначала распределение солнечной радиации на горизонтальную поверхность «на границе атмосферы». Можно было бы также сказать: «в отсутствии атмосферы». Этим мы допускаем, что нет ни поглощения, ни рассеяния радиации, ни отражения ее облаками. Распределение солнечной радиации на границе атмосферы является простейшим. Оно действительно существует на высоте нескольких десятков километров. Указанное распределение называют солярным климатом. Известно, как меняется в течение года солнечная постоянная и, стало быть, количество радиации, приходящее к Земле. Если определять солнечную постоянную для фактического расстояния Земли от Солнца, то при среднем годовом значении 1,98 кал/см2 мин она будет равна 2,05 кал/см2 мин в январе и 1,91 кал/см2 мин в июле. Стало быть, северное полушарие за летний день получает на границе атмосферы несколько меньше радиации, чем южное полушарие за свой летний день. Количество радиации, получаемое за сутки на границе атмосферы, зависит от времени года и широты места. Под каждой широтой время года определяет продолжительность притока радиации. Но под разными широтами продолжительность дневной части суток в одно и то же время разная. На полюсе солнце летом не заходит вовсе, а зимой не восходит в течение 6 месяцев. Между полюсом и полярным кругом солнце летом не заходит, а зимой не восходит в течение периода от полугода до одних суток. На экваторе дневная часть суток всегда продолжается 12 часов. От полярного круга до экватора дневное время суток летом убывает и зимой возрастает. Но приток солнечной радиации на горизонтальную поверхность зависит не только от продолжительности дня, а еще и от высоты солнца. Количество радиации, приходящее на границе атмосферы на единицу горизонтальной поверхности, пропорционально синусу высоты солнца. А высота солнца не только меняется в каждом месте в течение дня, но зависит и от времени года. Высота солнца на экваторе меняется в течение года от 90 до 66,5°, на тропиках — от 90 до 43°, на полярных кругах — от 47 до 0° и на полюсах от 23,5 до 0°. Шарообразность Земли и наклон плоскости экватора к плоскости эклиптики создают сложное распределение притока радиации по широтам на границе атмосферы и его изменения в течение года. Зимой приток радиации очень быстро убывает от экватора к полюсу, летом — гораздо медленнее. При этом максимум летом наблюдается на тропике, а от тропика к экватору приток радиации несколько убывает. Малая разница в притоке радиации между тропическими и полярными широтами летом объясняется тем, что хотя высоты солнца в полярных широтах летом ниже, чем в тропиках, но зато велика продолжительность дня. В день летнего солнцестояния полюс поэтому получал бы в отсутствии атмосферы больше радиации, чем экватор. Однако у земной поверхности в результате ослабления радиации атмосферой, отражения ее облачностью и т.д., летний приток радиации в полярных широтах существенно меньше, чем в более низких широтах. На верхней границе атмосферы вне тропиков имеется в годовом ходе один максимум радиации, приходящийся на время летнего солнцестояния, и один минимум, приходящийся на время зимнего солнцестояния. Но между тропиками приток радиации имеет два максимума в году, приходящиеся на те сроки, когда солнце достигает наибольшей полуденной высоты. На экваторе это будет в дни равноденствий, в других внутритропических широтах — после весеннего и перед осенним равноденствием, отодвигаясь тем больше от сроков равноденствий, чем больше широта. Амплитуда годового хода на экваторе мала, внутри тропиков невелика; в умеренных и высоких широтах она значительно больше.
|